泛函 Φ(u) = ∫[(u″)² + u² + 2f(x)u]dx − (u′(0))² 在 u(0)=u(1) 下的驻点方程与边界条件
题目
问题 15. 写出泛函
Φ(u)=∫01((u′′)2+u2+2f(x)u)dx−(u′(0))2
\Phi(u) = \int_{0}^{1} \left( (u^{\prime\prime})^{2} + u^{2} + 2f(x)u \right) dx - (u^{\prime}(0))^{2}
Φ(u)=∫01((u′′)2+u2+2f(x)u)dx−(u′(0))2
的驻点所满足的方程和边界条件,其中边界条件为
u(0)=u(1).
u(0) = u(1).
u(0)=u(1).
解题过程
为了找到泛函 Φ(u)\Phi(u)Φ(u) 的驻点,需要计算一阶变分 δΦ=0\delta \Phi = 0δΦ=0。泛函包含高阶导数和一个点值项,因此需要使用变分法推导欧拉-拉格朗日方程和自然边界条件。
泛函为:
Φ(u)=∫01((u′′)2+u2+2f(x)u)dx−(u′(0))2
\Phi(u) = \int_{0}^{1} \left( (u^{\prime\prime})^{2} + u^{2} + 2f(x)u \right) dx - (u^{\prime}(0))^{2}
Φ(u)=∫01((u′′)2+u2+2f(x)u)dx−(u′(0))2
给定边界条件 u(0)=u(1)u(0) = u(1)u(0)=u(1).
步骤 1: 计算一阶变分
令 L=(u′′)2+u2+2f(x)uL = (u'')^2 + u^2 + 2f(x)uL=(u′′)2+u2+2f(x)u,则:
Φ(u)=∫01L dx−[u′(0)]2
\Phi(u) = \int_{0}^{1} L \, dx - [u'(0)]^2
Φ(u)=∫01Ldx−[u′(0)]2
变分为:
δΦ=δ∫01L dx−δ[u′(0)]2
\delta \Phi = \delta \int_{0}^{1} L \, dx - \delta [u'(0)]^2
δΦ=δ∫01Ldx−δ[u′(0)]2
其中:
δ∫01L dx=∫01(∂L∂uδu+∂L∂u′δu′+∂L∂u′′δu′′)dx
\delta \int_{0}^{1} L \, dx = \int_{0}^{1} \left( \frac{\partial L}{\partial u} \delta u + \frac{\partial L}{\partial u'} \delta u' + \frac{\partial L}{\partial u''} \delta u'' \right) dx
δ∫01Ldx=∫01(∂u∂Lδu+∂u′∂Lδu′+∂u′′∂Lδu′′)dx
计算偏导数:
∂L∂u=2u+2f(x),∂L∂u′=0,∂L∂u′′=2u′′
\frac{\partial L}{\partial u} = 2u + 2f(x), \quad \frac{\partial L}{\partial u'} = 0, \quad \frac{\partial L}{\partial u''} = 2u''
∂u∂L=2u+2f(x),∂u′∂L=0,∂u′′∂L=2u′′
所以:
δ∫01L dx=∫01((2u+2f(x))δu+2u′′δu′′)dx
\delta \int_{0}^{1} L \, dx = \int_{0}^{1} \left( (2u + 2f(x)) \delta u + 2u'' \delta u'' \right) dx
δ∫01Ldx=∫01((2u+2f(x))δu+2u′′δu′′)dx
对 2u′′δu′′2u'' \delta u''2u′′δu′′ 进行分部积分(处理高阶导数):
∫012u′′δu′′ dx=[2u′′δu′]01−[2u′′′δu]01+∫012u(4)δu dx
\int_{0}^{1} 2u'' \delta u'' \, dx = \left[ 2u'' \delta u' \right]_{0}^{1} - \left[ 2u''' \delta u \right]_{0}^{1} + \int_{0}^{1} 2u^{(4)} \delta u \, dx
∫012u′′δu′′dx=[2u′′δu′]01−[2u′′′δu]01+∫012u(4)δudx
因此:
δ∫01L dx=∫01(2u+2f(x)+2u(4))δu dx+[2u′′δu′]01−[2u′′′δu]01
\delta \int_{0}^{1} L \, dx = \int_{0}^{1} \left( 2u + 2f(x) + 2u^{(4)} \right) \delta u \, dx + \left[ 2u'' \delta u' \right]_{0}^{1} - \left[ 2u''' \delta u \right]_{0}^{1}
δ∫01Ldx=∫01(2u+2f(x)+2u(4))δudx+[2u′′δu′]01−[2u′′′δu]01
另外:
δ[u′(0)]2=2u′(0)δu′(0),所以−δ[u′(0)]2=−2u′(0)δu′(0)
\delta [u'(0)]^2 = 2u'(0) \delta u'(0), \quad \text{所以} \quad - \delta [u'(0)]^2 = -2u'(0) \delta u'(0)
δ[u′(0)]2=2u′(0)δu′(0),所以−δ[u′(0)]2=−2u′(0)δu′(0)
综合以上:
δΦ=∫01(2u+2f(x)+2u(4))δu dx+[2u′′δu′]01−[2u′′′δu]01−2u′(0)δu′(0)
\delta \Phi = \int_{0}^{1} \left( 2u + 2f(x) + 2u^{(4)} \right) \delta u \, dx + \left[ 2u'' \delta u' \right]_{0}^{1} - \left[ 2u''' \delta u \right]_{0}^{1} - 2u'(0) \delta u'(0)
δΦ=∫01(2u+2f(x)+2u(4))δudx+[2u′′δu′]01−[2u′′′δu]01−2u′(0)δu′(0)
对于驻点,δΦ=0\delta \Phi = 0δΦ=0 对于所有允许的变分 δu\delta uδu。给定边界条件 u(0)=u(1)u(0) = u(1)u(0)=u(1),因此变分 δu\delta uδu 必须满足 δu(0)=δu(1)\delta u(0) = \delta u(1)δu(0)=δu(1).
步骤 2: 推导欧拉-拉格朗日方程
由于 δu\delta uδu 在 (0,1)(0,1)(0,1) 内任意,积分项系数必须为零:
2u+2f(x)+2u(4)=0
2u + 2f(x) + 2u^{(4)} = 0
2u+2f(x)+2u(4)=0
简化得:
u(4)+u+f(x)=0
u^{(4)} + u + f(x) = 0
u(4)+u+f(x)=0
这是驻点必须满足的微分方程。
步骤 3: 推导边界条件
剩余边界项必须为零:
[2u′′δu′]01−[2u′′′δu]01−2u′(0)δu′(0)=0
\left[ 2u'' \delta u' \right]_{0}^{1} - \left[ 2u''' \delta u \right]_{0}^{1} - 2u'(0) \delta u'(0) = 0
[2u′′δu′]01−[2u′′′δu]01−2u′(0)δu′(0)=0
展开:
2u′′(1)δu′(1)−2u′′(0)δu′(0)−2u′′′(1)δu(1)+2u′′′(0)δu(0)−2u′(0)δu′(0)=0
2u''(1) \delta u'(1) - 2u''(0) \delta u'(0) - 2u'''(1) \delta u(1) + 2u'''(0) \delta u(0) - 2u'(0) \delta u'(0) = 0
2u′′(1)δu′(1)−2u′′(0)δu′(0)−2u′′′(1)δu(1)+2u′′′(0)δu(0)−2u′(0)δu′(0)=0
代入 δu(0)=δu(1)\delta u(0) = \delta u(1)δu(0)=δu(1)(记作 δub\delta u_bδub),整理:
2[u′′′(0)−u′′′(1)]δu(0)+2u′′(1)δu′(1)−2[u′′(0)+u′(0)]δu′(0)=0
2 [u'''(0) - u'''(1)] \delta u(0) + 2u''(1) \delta u'(1) - 2 [u''(0) + u'(0)] \delta u'(0) = 0
2[u′′′(0)−u′′′(1)]δu(0)+2u′′(1)δu′(1)−2[u′′(0)+u′(0)]δu′(0)=0
由于 δu(0)\delta u(0)δu(0), δu′(0)\delta u'(0)δu′(0), 和 δu′(1)\delta u'(1)δu′(1) 独立,系数必须分别为零:
- u′′′(0)−u′′′(1)=0u'''(0) - u'''(1) = 0u′′′(0)−u′′′(1)=0 即 u′′′(0)=u′′′(1)u'''(0) = u'''(1)u′′′(0)=u′′′(1)
- u′′(1)=0u''(1) = 0u′′(1)=0
- u′′(0)+u′(0)=0u''(0) + u'(0) = 0u′′(0)+u′(0)=0
此外,给定边界条件 u(0)=u(1)u(0) = u(1)u(0)=u(1) 必须满足。
最终方程和边界条件
驻点满足以下方程和边界条件:
- 微分方程:
u(4)+u+f(x)=0,x∈(0,1) u^{(4)} + u + f(x) = 0, \quad x \in (0,1) u(4)+u+f(x)=0,x∈(0,1) - 边界条件:
u(0)=u(1),u′′′(0)=u′′′(1),u′′(1)=0,u′′(0)+u′(0)=0 u(0) = u(1), \quad u'''(0) = u'''(1), \quad u''(1) = 0, \quad u''(0) + u'(0) = 0 u(0)=u(1),u′′′(0)=u′′′(1),u′′(1)=0,u′′(0)+u′(0)=0
这些是泛函 Φ(u)\Phi(u)Φ(u) 在给定约束下的驻点所需满足的条件