当前位置: 首页 > news >正文

JVM-运行时内存-虚拟机栈与本地方法栈


运行时内存图


内存结构图


2. 虚拟机栈


2.1 概述


如何理解栈管运行,堆管存储?

  1. 角度一:GC;OOM
  2. 角度二:栈、堆执行效率
  3. 角度三:内存大小;数据结构
  4. 角度四:栈管运行;堆管存储。

如何设置栈内存的大小?

-Xss1024k

一般默认为512k-1024k,取决于操作系统。

栈的大小直接决定了函数调用的最大可达深度。

2.2 栈针

每个线程都有自己的栈,栈中的数据都是以栈帧(Stack Frame)的格式存在。

方法和栈桢之间存在怎样的关系?

在这个线程上正在执行的每个方法都各自对应一个栈帧(Stack Frame)。

栈帧是一个内存区块,是一个数据集,维系着方法执行过程中的各种数据信息。

2.3 栈针内部结构

栈针内部

每个栈帧中存储着:

  • 局部变量表(Local Variables)
  • 操作数栈(Operand Stack)(或表达式栈)
  • 动态链接(Dynamic Linking) (或指向运行时常量池的方法引用)
  • 方法返回地址(Return Address)(或方法正常退出或者异常退出的定义)
  • 一些附加信息

2.3.1 局部变量表

  • 局部变量表也被称之为局部变量数组或本地变量表
  • 定义为一个数字数组,主要用于存储方法参数和定义在方法体内的局部变量,这些数据类型包括各类基本数据类型(8种)、对象引用(reference),以及returnAddress类型。
  • 局部变量表所需的容量大小是在编译期确定下来的,并保存在方法的Code属性的maximum local variables数据项中。在方法运行期间是不会改变局部变量表的大小的。
  • 方法嵌套调用的次数由栈的大小决定。一般来说,栈越大,方法嵌套调用次数越多。对一个函数而言,它的参数和局部变量越多,使得局部变量表膨胀,它的栈帧就越大,以满足方法调用所需传递的信息增大的需求。进而函数调用就会占用更多的栈空间,导致其嵌套调用次数就会减少。
  • 局部变量表中的变量只在当前方法调用中有效。在方法执行时,虚拟机通过使用局部变量表完成参数值到参数变量列表的传递过程。当方法调用结束后,随着方法栈帧的销毁,局部变量表也会随之销毁。

2.3.2 操作数栈

  • 我们说Java虚拟机的解释引擎是基于栈的执行引擎,其中的栈指的就是操作数栈。
  • 每一个独立的栈帧中除了包含局部变量表以外,还包含一个后进先出(Last-In-First-Out)的操作数栈,也可以称之为表达式栈(Expression Stack)。
  • 操作数栈就是JVM执行引擎的一个工作区,当一个方法刚开始执行的时候,一个新的栈帧也会随之被创建出来,这个方法的操作数栈是空的。
  • 每一个操作数栈都会拥有一个明确的栈深度用于存储数值,其所需的最大深度在编译期就定义好了,保存在方法的Code属性中,为max_stack的值。
  • 栈中的任何一个元素都是可以任意的Java数据类型。
    • 32bit的类型占用一个栈单位深度
    • 64bit的类型占用两个栈单位深度
  • 操作数栈,在方法执行过程中,根据字节码指令,并非采用访问索引的方式来进行数据访问的,而是只能通过标准的入栈(push)和出栈(pop)操作,往栈中写入数据或提取数据来完成一次数据访问。
    • 某些字节码指令将值压入操作数栈,其余的字节码指令将操作数取出栈。使用它们后再把结果压入栈。比如:执行复制、交换、求和等操作
  • 如果被调用的方法带有返回值的话,其返回值将会被压入当前栈帧的操作数栈中,并更新PC寄存器中下一条需要执行的字节码指令。

何为栈顶缓存技术?

前面提过,基于栈式架构的虚拟机所使用的零地址指令更加紧凑,但完成一项操作的时候必然需要使用更多的入栈和出栈指令,这同时也就意味着将需要更多的指令分派(instruction dispatch)次数和内存读/写次数。

由于操作数是存储在内存中的,因此频繁地执行内存读/写操作必然会影响执行速度。为了解决这个问题,HotSpot JVM的设计者们提出了栈顶缓存(ToS,Top-of-Stack Cashing)技术,将栈顶元素全部缓存在物理CPU的寄存器中,以此降低对内存的读/写次数,提升执行引擎的执行效率。

2.3.3 动态链接

每一个栈帧内部都包含一个指向运行时常量池中该栈帧所属方法的引用。包含这个引用的目的就是为了支持当前方法的代码能够实现动态链接(Dynamic Linking)。比如:invokedynamic指令

在 Java源文件 被编译到字节码文件中时,所有的变量和方法引用都作为符号引用(Symbolic Reference)保存在class文件的常量池里。比如:描述一个方法调用了另外的其他方法时,就是通过常量池中指向方法的符号引用来表示的,那么动态链接的作用就是为了将这些符号引用转换为调用方法的直接引用。

2.3.4 方法返回地址

  • 存放调用该方法的pc寄存器的值。
  • 一个方法的结束,有两种方式:
    • 正常执行完成
    • 出现未处理的异常,非正常退出
  • 无论通过哪种方式退出,在方法退出后都返回到该方法被调用的位置。方法正常退出时,调用者的pc计数器的值作为返回地址,即调用该方法的指令的下一条指令的地址。而通过异常退出的,返回地址是要通过异常表来确定,栈帧中一般不会保存这部分信息。

2.3.5 一些附加信息

栈帧中还允许携带与Java虚拟机实现相关的一些附加信息。例如,对程序调试提供支持的信息。

2.4 小结与问题扩展

问题一:栈溢出的情况?
栈溢出:StackOverflowError;
举个简单的例子:在main方法中调用main方法,就会不断压栈执行,直到栈溢出;
栈的大小可以是固定大小的,也可以是动态变化(动态扩展)的。
如果是固定的,可以通过-Xss设置栈的大小;
如果是动态变化的,当栈大小到达了整个内存空间不足了,就是抛出OutOfMemory异常(java.lang.OutOfMemoryError)

问题二:调整栈大小,就能保证不出现溢出吗?
不能。因为调整栈大小,只会减少出现溢出的可能,栈大小不是可以无限扩大的,所以不能保证不出现溢出

问题三:分配的栈内存越大越好吗?
不是,因为增加栈大小,会造成每个线程的栈都变的很大,使得一定的栈空间下,能创建的线程数量会变小

问题四:垃圾回收是否会涉及到虚拟机栈?
不会;垃圾回收只会涉及到方法区和堆中,方法区和堆也会存在溢出的可能;
程序计数器,只记录运行下一行的地址,不存在溢出和垃圾回收;
虚拟机栈和本地方法栈,都是只涉及压栈和出栈,可能存在栈溢出,不存在垃圾回收。

问题五:方法中定义的局部变量是否线程安全?
结论:如果局部变量在内部产生并在内部消亡的,那就是线程安全的


文章转载自:

http://rrz9g8yT.yqrgq.cn
http://gS8llSzh.yqrgq.cn
http://7nyPz2CL.yqrgq.cn
http://NyAlDGdZ.yqrgq.cn
http://F1R6LZSn.yqrgq.cn
http://aeaFJFK0.yqrgq.cn
http://cGkZ0DWy.yqrgq.cn
http://AspatUu9.yqrgq.cn
http://hePLk1sX.yqrgq.cn
http://Rqh2RytI.yqrgq.cn
http://VCsof6GJ.yqrgq.cn
http://uYfVNJCt.yqrgq.cn
http://yxarLC3V.yqrgq.cn
http://V6p1FciM.yqrgq.cn
http://KuT7hhkr.yqrgq.cn
http://uboMmQcW.yqrgq.cn
http://YLyvRZ0y.yqrgq.cn
http://wrnpcyE4.yqrgq.cn
http://5RaEOc3V.yqrgq.cn
http://Stad1jAj.yqrgq.cn
http://cVAZS1sU.yqrgq.cn
http://RL9G7DIV.yqrgq.cn
http://20LigQOb.yqrgq.cn
http://3sCgi1BY.yqrgq.cn
http://nCuHOcNB.yqrgq.cn
http://PSbRhHdA.yqrgq.cn
http://ua5bodbb.yqrgq.cn
http://xQMk5Drg.yqrgq.cn
http://9aH8oZOv.yqrgq.cn
http://wrE1k8sq.yqrgq.cn
http://www.dtcms.com/a/384416.html

相关文章:

  • Matplotlib定制:精解颜色、字体、线型与标记
  • 让AI帮助我们将Python程序打包EXE可执行文件的完整指南
  • vs2019远程调试——设置远程机器上的include目录和so目录
  • 如何使用 Spring Boot、Kafka 和 Kubernetes 构建可扩展的消息处理应用
  • 贪心算法应用:手术室排程问题详解
  • ZooKeeper深度性能优化指南:从原理到实战的全面调优
  • 2025软件测试高频面试题
  • 【论文阅读】Diff-Privacy: Diffusion-based Face Privacy Protection
  • 第四篇:【基础篇】Python的“单词”与“语法”:深入理解变量、关键字与标识符
  • Python的输出缓冲区机制
  • Scikit-learn 简单介绍入门和常用API汇总
  • [Dify] 用多个工具节点构建多轮 API 调用任务流:链式任务设计实战指南
  • Java实战:从零开发图书管理系统
  • 认知语义学中的隐喻对人工智能自然语言处理的深层语义分析的启示与影响研究报告
  • Mysql数据库事务全解析:概念、操作与隔离级别
  • Halcon 常用算子
  • 基于Spring Boot与Micrometer的系统参数监控指南
  • 【高并发内存池——项目】定长内存池——开胃小菜
  • 作为注册中心zk和nacos如何选型
  • 前置配置3:nacos 配置中心
  • Linux —— 进程的程序替换[进程控制]
  • [Linux] 从YT8531SH出发看Linux网络PHY驱动
  • ArcGIS定向影像(2)——非传统影像轻量级解决方案
  • 分享机械键盘MCU解决方案
  • Unity 性能优化 之 编辑器创建资源优化(UGUI | 物理 | 动画)
  • PostgreSQL——分区表
  • Elastic APM 高级特性:分布式追踪与机器学习优化
  • Ubuntu 服务器配置转发网络访问
  • Redis 数据结构源码剖析(SDS、Dict、Skiplist、Quicklist、Ziplist)
  • C#通讯之网络通讯 TCP UDP