当前位置: 首页 > news >正文

ElasticSearch数据库(ES数据库)是什么???

elasticsearch一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的

正向索引

正向索引查询时:

  1. 如果是根据ID查询,直接走索引,查询速度非常快

  2. 如果是基于其他列做模糊查询,只能逐行扫描数据

    1. 逐行获取数据

    2. 判断数据中的对应列的内容是否符合用户的搜索要求

    3. 如果符合就放入结果集,不符合就丢弃

    逐行扫描也是全表扫描,随着数据量的增加,查询效率会越慢

倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

搜索流程

  1. 用户输入条件"华为手机"进行搜索。

  2. 对用户输入内容分词,得到词条:华为、手机。

  3. 拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

  4. 拿着文档id到正向索引中查找具体文档。

虽然要先查询倒排索引,再查询正排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描

正向和倒排对比

概念区别:

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

优缺点:

正向索引

  • 优点:可以给多个字段创建索引,根据索引字段搜索、排序速度非常快

  • 缺点:根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:根据词条搜索、模糊搜索时,速度非常快

  • 缺点:只能给词条创建索引,而不是字段,无法根据字段做排序

ES基本概念

  • 文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中,而Json文档中往往包含很多的字段(Field),类似于mysql数据库中的列

  • 索引和映射

索引就像数据库里的表,映射就像数据库中定义的表结构

索引(Index),就是相同类型的文档的集合【类似mysql中的表】

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;

  • 所有商品的文档,可以组织在一起,称为商品的索引;

  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

mysql与elasticsearch

各自长处:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

我们统一的把mysql与elasticsearch的概念做一下对比

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

http://www.dtcms.com/a/350337.html

相关文章:

  • docker安装ros
  • 网络编程1-基本概念、函数接口
  • 页面中嵌入Coze的Chat SDK
  • Hazelcast
  • Docker:数据卷(挂载本地目录)
  • FFmpeg 8.0 “Huffman“ 全面评测:Vulkan 加速、AI 集成与编解码革新
  • 8月25日
  • UPROPERTY的再次学习
  • 高通SNPE测试:6、在开发板上运行Inception v3 Model(oe-linux)
  • vite + react + tailwind(2025-08-25)
  • C++贪吃蛇---详细步骤
  • 2.4 Flink运行时架构:Task、SubTask、ExecutionGraph的关系
  • OPcache 高级技术文档:原理、监控与优化实践
  • Unity使用Sprite切割大图
  • JavaScript 性能优化实战:从理论到落地的技术文章大纲
  • 基于长短期记忆网络的多变量时间序列预测 LSTM
  • Redis 哨兵 Sentinel
  • 【沉浸式解决问题】NVIDIA 显示设置不可用。 您当前未使用连接到NVIDIA GPU 的显示器。
  • 实时监测蒸汽疏水阀的工作状态的物联网实时监控平台技术解析
  • VLLM的加速原理
  • 基于MATLAB实现支持向量机(SVM)进行预测备
  • 大模型的多机多卡训练
  • 神经网络|(十五)概率论基础知识-协方差标准化和皮尔逊相关系数
  • 亚马逊AWD美西新仓上线:旺季备货的效率革命与策略升级
  • 真实应急响应案例记录
  • 机器学习笔记
  • Neumann Networks for Linear Inverse Problems in Imaging论文阅读
  • CF2133D 鸡骑士
  • 基于遗传算法优化BP神经网络的时间序列预测 GA-BP
  • PNP机器人介绍:全球知名具身智能/AI机器人实验室介绍之多伦多大学机器人研究所