当前位置: 首页 > news >正文

【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程

 一、数据集介绍

【数据集】yolov8水稻病害检测数据集 6715 张,目标检测,包含YOLO/VOC格式标注,训练、验证、测试集已划分

数据集中标签包含3种分类names: ['Bacteria_Leaf_Blight', 'Brown_Spot', 'Leaf_smut'],分别代表水稻白叶枯病、水稻胡麻斑病、水稻叶黑粉病。

可用于无人机水稻病害识别,监控水稻生长状况检测等。

检测场景为田地、农业研究院等场景,可用于田间水稻状态实时预警​、品种抗病性评估、种植区域病害监测​等。

文章底部或主页私信获取数据集~

1、数据概述

水稻病害检测的重要性

水稻是我国主要粮食作物,其产量稳定直接关系粮食安全与农户收益。但水稻生长周期中易受多种病害侵袭,这类病害初期多表现为叶片斑点、霉变等细微症状,若未及时发现,会快速扩散至全田,导致稻株枯萎、结实率下降,严重时甚至颗粒无收。​

传统水稻病害检测存在明显短板:依赖人工逐株巡查,需种植者或技术员深入田间观察叶片、稻穗状态,不仅耗费大量人力时间,还受经验限制 —— 新手易漏判早期轻症,老手也难以覆盖大面积稻田;且病害确诊后,信息传递滞后,常错过最佳防治时机,导致病害进一步蔓延。​

YOLO 算法恰好破解这些难题:其一,可结合田间监控摄像头或无人机航拍,实现高帧率实时检测,无需人工逐株排查,能快速覆盖连片稻田;其二,对常见水稻病害的识别精度高,可精准捕捉叶片上的早期病征,甚至区分相似病害(如稻瘟病与胡麻叶斑病),避免误判;其三,检测结果能实时同步至种植者手机或农业管理平台,实现 “病害即发现、信息即同步”,为及时防治提供关键支撑,是推动水稻种植从 “经验防治” 向 “精准防控” 转型的核心技术。

基于YOLO的水稻病害识别算法

  1. 田间实时预警:YOLO 通过田间部署的监控设备或无人机巡检,实时识别水稻病害迹象,一旦发现异常,立即推送预警(含病害类型、发生区域)至种植者。相比人工巡查,能大幅缩短病害发现时间,帮助在病害扩散前介入处理,有效减少产量损失。​

  2. 精准施药指导:检测时可同步定位病害发生的具体区域与严重程度,种植者无需全田喷洒农药,只需针对病株集中区域精准施药。这不仅能减少农药使用量,降低土壤与水体污染,还能节约农药成本,契合绿色农业发展需求。​

  3. 品种抗病性评估:在农业科研或育种场景中,YOLO 可长期监测不同水稻品种在相同环境下的病害发生情况,记录各品种发病时间、病害严重程度,为量化评估品种抗病能力提供数据支撑,助力培育更耐病的优质水稻品种,从源头降低病害风险。​

  4. 区域病害监测:多地块部署 YOLO 检测设备后,可汇总各地水稻病害数据,形成区域病害分布图谱。农业管理部门能据此预判病害传播趋势,提前调配防治物资、组织技术人员下乡指导,避免区域性病害爆发,保障区域水稻生产稳定。

该数据集含有 6715 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试田地、农业研究院等场景进行水稻生长状态检测

图片格式为jpg格式,标注格式分别为:

YOLO:txt

Pascal VOC:xml

数据集均为手工标注,保证标注精确度。

2、数据集文件结构

rice/

——test/

————Annotations/

————images/

————labels/

——train/

————Annotations/

————images/

————labels/

——valid/

————Annotations/

————images/

————labels/

——data.yaml

  • 该数据集已划分训练集样本,分别是:test目录(测试集)、train目录(训练集)、valid目录(验证集);
  • Annotations文件夹为Pascal VOC格式的XML文件 ;
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含水稻病害识别的目标分类和加载路径。

​​​​

Annotations目录下的xml文件内容如下:

<?xml version="1.0" encoding="utf-8"?><annotation><folder>driving_annotation_dataset</folder><filename>img_blb_55_jpg.rf.80771c4d8e96590b8e08cdf4c078685b.jpg</filename><size><width>587</width><height>587</height><depth>3</depth></size><object><name>Bacteria_Leaf_Blight</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>110</xmin><ymin>2</ymin><xmax>402</xmax><ymax>261</ymax></bndbox></object></annotation>

labels目录下的txt文件内容如下:

2 0.5017035775127768 0.626916524701874 0.3432708688245315 0.30664395229982966
2 0.49829642248722317 0.28960817717206133 0.23679727427597955 0.2734241908006814

3、数据集适用范围 

  • 目标检测场景,无人机检测,监控识别
  • yolo训练模型或其他模型
  • 田地、农业研究院等场景
  • 可用于田间水稻状态实时预警​、品种抗病性评估、种植区域病害监测等

4、数据集标注结果 

4.1、数据集内容 

  1. 多角度场景:行人视角数据样本,监控视角数据样本
  2. 标注内容:names: ['Bacteria_Leaf_Blight', 'Brown_Spot', 'Leaf_smut'],总计2个分类;
  3. 图片总量:6715 张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

5、训练过程

5.1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

​​​

5.2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

5.3、数据集格式化处理

在ultralytics-main目录下创建一个voc_label.py文件,用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['Bacteria_Leaf_Blight', 'Brown_Spot', 'Leaf_smut'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

5.4、修改数据集配置文件

在ultralytics-main目录下创建一个data.yaml文件

train: data/train.txt
val: data/val.txt
test: data/test.txtnc: 3
names: ['Bacteria_Leaf_Blight', 'Brown_Spot', 'Leaf_smut']

5.5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

5.6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

视频推理,代码如下:

import cv2
from ultralytics import YOLO# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) # Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 inference on the frame# results = model(frame)results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)results[0].names[0] = "道路积水"# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output fileout.write(annotated_frame)# Display the annotated frame (optional)cv2.imshow("YOLOv8 Inference", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

图片推理,代码如下:

import warningswarnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('models/best.pt')model.predict(source='test_pic',imgsz=640,save=True,conf=0.25)

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

6、获取数据集 

文章底部或主页私信获取数据集~

二、YOLO水稻病害检测系统

1、功能介绍

1. 模型管理

支持自定义上传模型文件,一键加载所选模型,基于 YOLO 框架进行推理。

2. 图片检测

    - 支持上传本地图片文件,自动完成格式校验。

    - 对上传图片进行目标检测,检测结果以带有边框和标签的图片形式返回并展示。

    - 检测结果可下载保存。

3. 视频检测与实时流

    - 支持上传本地视频文件,自动完成格式校验。

    - 对视频逐帧检测,检测结果通过 MJPEG 流实时推送到前端页面,用户可边看边等。

    - 支持摄像头实时检测(如有接入摄像头)。

4. 置信度阈值调节

    - 前端可实时调整检测置信度阈值,动态影响检测结果。

    - 阈值调整后,后端推理自动应用新阈值,无需重启。

5. 日志与状态反馈

    - 前端集成日志区,实时显示模型加载、推理、文件上传等操作的进度与结果。

    - 检测异常、错误信息及时反馈,便于排查。

    - 一键清空日志,笔面长期占用内存。

  

2、创建环境并安装依赖:

conda create -n ultralytics-env python=3.10
conda activate ultralytics-env
pip install -r requirements.txt

3、启动项目

python app.py

打开浏览器访问:http://localhost:5000

4、效果展示

4.1、推理效果

  

  

4.2、日志文本框

4.3、摄像头检测

以红绿灯检测为例:

5、前端核心页面代码

<!doctype html>
<html lang="zh-CN"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width,initial-scale=1"><title>视觉检测系统 - Web UI</title><link rel="stylesheet" href="/static/style.css"><link rel="icon" href="/favicon.ico">
</head><body><div class="container main-flex"><!-- 左侧内容区 --><div class="left-content"><header><h1>YOLO水稻病害检测系统</h1><div id="currentModelDisplay" class="modelDisplay" title="当前模型">当前模型:未上传模型</div></header><main><div class="videoPanel"><div class="pane"><h3>原图 / 视频</h3><div class="preview" id="srcPreview">预览区</div></div><div class="pane"><h3>检测结果</h3><div class="preview" id="detPreview">检测结果</div></div></div><section class="logArea"><div class="logHeader"><h3>日志</h3></div><div class="logInner"><div id="logs" class="logs"></div></div></section></main></div><!-- 右侧按钮栏 --><aside class="right-bar"><!-- 1. 模型上传/加载区 --><section class="model-section"><button id="uploadModelBtn" class="ghost">上传模型<input id="modelFileInput" type="file" accept=".pt" title="选择 .pt 模型文件"></button><button id="loadModel">加载模型</button></section><!-- 2. 检测方式选择区 --><section class="detect-mode-section"><div class="detect-mode-title">请选择检测方式</div><div class="detect-mode-radio-group"><label><input type="radio" name="detectMode" value="upload" checked> 图片/视频</label><label><input type="radio" name="detectMode" value="camera"> 摄像头</label></div><div id="detectModeUpload" class="detect-mode-panel"><div class="uploaded-file-name"><span id="uploadedFileName" class="placeholder">未选择文件</span></div><div style="height: 22px;"></div><button id="uploadBtn">上传文件<input id="fileInput" type="file" accept="image/*,video/*" title="上传图片或视频" aria-label="上传图片或视频"></button></div><div id="detectModeCamera" class="detect-mode-panel" style="display:none;"><button id="cameraDetectBtn" class="ghost">开启摄像头</button><div id="cameraPreview" class="camera-preview"><video id="localCameraVideo" autoplay muted playsinline></video><div class="camera-controls"><button id="stopCameraBtn" class="ghost">关闭摄像头</button></div></div></div><div class="confWrap"><label class="conf">置信度<input id="confRange" type="range" min="0.01" max="0.99" step="0.01" value="0.5"><input id="confValue" type="number" min="0.01" max="0.99" step="0.01" value="0.5"></label></div></section><!-- 3. 操作按钮区 --><section class="action-btn-section"><button id="startBtn" disabled class="start">开始检测</button><button id="stopBtn" disabled class="stop">停止</button><button id="clearLogs" class="ghost">清空日志</button></section></aside></div><script src="/static/app.js"></script>
</body></html>

6、代码获取

文章底部名片或私信获取系统源码和数据集~

更多数据集请查看

以上内容均为原创。

http://www.dtcms.com/a/577124.html

相关文章:

  • 3D Gaussian Splatting:渲染流程
  • 云原生LVS+Keepalived高可用方案(二)
  • IBM VO 面试经验分享|一场更像“聊天”的正式考核
  • 用单位的服务器做网站关键词优化网站
  • C语言基础开发入门系列(八)C语言指针的理解与实战
  • 如何绑定网站域名解析电商网站模板html
  • 【机器视觉通用检测框架】基于VS2019 C#+VisionPro9.0开发的视觉框架软件,全套源码,开箱即用
  • 智慧交通管理新范式 基于深度学习的城市交通车型识别AI监控系统 车型识别 停车场车型分类系统 高速路车型识别算法
  • pnpm 安装依赖后 仍然启动报的问题
  • 【河北政务服务网-注册_登录安全分析报告】
  • 深入理解 package.json:前端项目的 “身份证“
  • 【辽宁政务服务网-注册_登录安全分析报告】
  • 免费正能量励志网站建设网站要多久到账
  • 新乡市红旗区建设局网站网页制作素材网有哪些
  • 用车申请车辆管理小程序开发
  • 单片机.RS485
  • 从单模型到多域自由转换:StarGAN的公式与多域图像生成魔法
  • 人工智能在全球多领域的应用潜力及当前技术面临的挑战
  • Python处理json数据
  • go开发规范指引
  • 期权交易中的希腊字母:风险管理的多维指南
  • C++---关键字constexpr
  • 广州购物网站公司地址广州网站建设
  • 手术机器人多传感器数据融合 × 深度学习前沿研究精要(2024-2025)
  • 火山引擎升级AI云原生套件:AgentKit、ServingKit、TrainingKit全链路加速AI应用落地
  • Git命令速查手册
  • 随机链表的复制 (带random的链表深度拷贝)| C语言实现
  • 大仓库推到GitHub大踩坑-Git LFS从安装到使用
  • 宁夏制作网站公司网站仿静态和静态的区别
  • 【App开发】02:Android Studio项目环境设置