当前位置: 首页 > news >正文

K-means损失函数-收敛证明

K-means 聚类算法的损失函数推导与收敛性证明的核心过程,通过数学推导解释了 K-means “迭代更新聚类中心” 的合理性
在这里插入图片描述
在这里插入图片描述
K-means 的迭代过程是 “分配样本到最近中心→更新中心为类内质心” 的循环。

上述推导从数学上保证了:
每次更新聚类中心 μk 时,损失函数 J 都会严格减小或保持不变(因为是通过求导找极小值点);

由于损失函数 J 是 “距离平方和”,其取值下界为 0(不可能无限减小)
因此迭代过程必然收敛(即 J 最终会稳定在某个最小值,聚类中心不再变化)

示例

通过一个二维数据集的具体案例,完整演示 K-means 损失函数的推导和收敛性证明逻辑
(从结果反向推到)
在这里插入图片描述
注意:步骤2中的x是个二维坐标
在这里插入图片描述
注意:下文的 x1 和 x2 指的是 x 的横坐标和纵坐标;uk1 和 uk2 指的是 uk 的横坐标和纵坐标
在这里插入图片描述
在这里插入图片描述
计算出来的结果为 4
在这里插入图片描述

迭代 2:聚类中心无变化,损失函数稳定
由于迭代 1 后聚类中心已无变化,样本分配也不再改变,损失函数 J 保持为 4,迭代终止

损失函数 J 从初始随机状态(若初始中心选得差,J 会更大)逐渐减小到 4 后稳定
每次更新聚类中心时,J 单调递减(或不变),且因下界为 0,迭代必然收敛

附录

什么是损失函数

损失函数(Loss Function) 是机器学习和优化领域的核心工具,用于量化模型预测结果与真实结果的 “差异程度”,是指导模型迭代优化的 “指南针”。

定义:损失函数是一个数学函数,输入为 “模型预测值” 和 “真实标签(或目标值)”,输出为一个标量数值,该数值越大表示 “预测与真实的差异越大”,模型性能越差。
核心作用:为模型优化提供方向—— 通过最小化损失函数,让模型的预测尽可能接近真实结果,从而提升泛化能力。

在这里插入图片描述

关键特性总结
单调性:预测与真实的差异越大,损失函数值越大
可导性:多数损失函数是可导的,这是 “梯度下降” 等优化算法能生效的前提
任务特异性:不同任务(分类、回归、聚类)需选择适配的损失函数,否则会导致优化方向错误

简言之,损失函数是 “模型性能的量化标尺”,它将 “模型好不好” 转化为数学上的 “数值大小”,让模型的优化过程可计算、可迭代。

http://www.dtcms.com/a/456754.html

相关文章:

  • 如何看网站是不是织梦做的建一家网站多少钱
  • 通讯录的实现
  • CTFHub SQL注入通关笔记5:时间盲注(手注法+脚本法)
  • Excel表格批注提取器-网页版源码
  • 【机器学习】无监督学习 —— K-Means 聚类、DBSCAN 聚类
  • 【深入浅出PyTorch】--3.2.PyTorch组成模块2
  • [C++] --- 常用设计模式
  • vite 怎么阻止某一页面的热更新
  • 邯郸网站设计做网站的一般尺寸
  • 【Linux系列】并发世界的基石:透彻理解 Linux 进程 — 进程优先级切换调度
  • 上海做网站技术做海报找素材网站
  • 全志 H3 armbian 备份
  • 【AI论文】DeepSearch:借助蒙特卡洛树搜索,以可验证奖励突破强化学习的瓶颈
  • 汽车信息安全新国标落地指南:GB 44496-2024测试验收实践
  • php网站怎么注入做网站都有备案吗
  • 大兴网站建设多少钱怎么建个网站
  • Java 大视界 -- Java 大数据机器学习模型在电商供应链库存协同管理与成本控制中的应用(421)
  • 【调研】加密货币/BTC/区块链的发展历史(2025)
  • 个人用云计算学习笔记 --20 (Nginx 服务器)
  • 【密码学实战】openHiTLS passwd命令行:专业密码哈希生成工具
  • form-data与x-www-form-urlencoded
  • 黑龙江省建设网官方网站中卫市平面设计培训学校
  • 《投资-105》价值投资者的认知升级与交易规则重构 - 如何从投资的角度看一下创业公司是否能够加入?你不是在找一份工作,你是在选择下一个5年的人生资产。
  • 前端梳理体系从常问问题去完善-框架篇(react生态)
  • 基于单片机的双档输出数字直流电压源设计
  • FastDDS
  • leetcode LCR.衣橱整理
  • 基于单片机的自动存包柜设计
  • 竞价关键词排名软件保山网站建设优化
  • 电力市场学习笔记(1):什么是电力现货交易