nivida jetson orinnx torch环境搭建
目录
nivida jetson orinnx 环境搭建
查看系统版本:
安装:
下载以后,pip install xxx.whl
测试torch可用
查看cuda版本:
nivida jetson orinnx 环境搭建
查看系统版本:
cat /etc/nv_tegra_release
# R35 (release), REVISION: 3.1, GCID: 32827747, BOARD: t186ref, EABI: aarch64, DATE: Sun Mar 19 15:19:21 UTC 2023
安装 PyTorch:您应该使用为 JetPack 5.1 (L4T R35.2.1) / 5.1.1 (L4T R35.3.1) 编译的 PyTorch 版本。
安装:
pip install torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whlsudo apt update && sudo apt install -y libopenblas-base libopenmpi-dev libjpeg-dev zlib1g-dev
下载以后,pip install xxx.whl
测试torch可用
python3 -c "import torch; print('PyTorch版本:', torch.__version__); print('CUDA可用:', torch.cuda.is_available()); print('设备名:', torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'); x=torch.rand(2,2).cuda(); print('GPU测试成功') if torch.cuda.is_available() else print('CPU模式')"
查看cuda版本:
dpkg -l | grep cuda
11.4版本
pytorch下载地址:
https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
wget https://nvidia.box.com/shared/static/ssfup6tyowjz5c21k37aip8pjyc2i2v6.whl -O torch-2.1.0-cp38-cp38-linux_aarch64.whl
pip3 install numpy torch-2.1.0-cp38-cp38-linux_aarch64.whl
安装TorchVision:同样,需要安装对应版本的torchvision。bash
sudo apt install libjpeg-dev zlib1g-dev libpython3-dev libopenblas-dev libavcodec-dev libavformat-dev libswscale-dev
git clone --branch v0.16.0 https://github.com/pytorch/vision torchvision # 版本要与PyTorch对应
cd torchvision
export BUILD_VERSION=0.16.0
pip3 install .
验证安装:同上,运行Python验证torch.cuda.is_available()。