当前位置: 首页 > news >正文

C++学习:哈希表unordered_set/unordered_map的封装

        前面我们已经学习过哈希表的底层结构,本期就让我们结合STL源码的内容和以往实现的哈希表对unordered_map和unordered_set进行封装

        相关内容作者的个人gitee:楼田莉子/CPP代码学习喜欢请点个赞谢谢

目录

源码及框架分析

实现出复用哈希表的框架,并支持insert

迭代器的实现

        思路:

        模拟实现

map实现[]

源码

unordered_set.h

unordered_map.h

HashTable2.h


源码及框架分析

        SGI-STL30版本源代码中没有unordered_map和unordered_set,SGI-STL30版本是C++11之前的STL版本,这两个容器是C++11之后才更新的。但是SGI-STL30实现了哈希表,只容器的名字是hash_map和hash_set,他是作为⾮标准的容器出现的,⾮标准是指⾮C++标准规定必须实现的,源代码在hash_map/hash_set/stl_hash_map/stl_hash_set/stl_hashtable.h中

        hash_map和hash_set的实现结构框架核⼼部分截取出来如下:

//为了可读性作者稍稍改了一下格式// stl_hash_set
template <class Value, class HashFcn = hash<Value>,class EqualKey = equal_to<Value>,class Alloc = alloc>
class hash_set
{ 
private:typedef hashtable<Value, Value, HashFcn, identity<Value>,EqualKey, Alloc> ht;ht rep;
public:typedef typename ht::key_type key_type;typedef typename ht::value_type value_type;typedef typename ht::hasher hasher;typedef typename ht::key_equal key_equal;typedef typename ht::const_iterator iterator;typedef typename ht::const_iterator const_iterator;hasher hash_funct() const { return rep.hash_funct(); }key_equal key_eq() const { return rep.key_eq(); }
}
// stl_hash_map
template <class Key, class T, class HashFcn = hash<Key>,class EqualKey = equal_to<Key>,class Alloc = alloc>
class hash_map
{
private:typedef hashtable<pair<const Key, T>, Key, HashFcn,select1st<pair<const Key, T> >, EqualKey, Alloc> ht;ht rep;
public:typedef typename ht::key_type key_type;typedef T data_type;typedef T mapped_type;typedef typename ht::value_type value_type;typedef typename ht::hasher hasher;typedef typename ht::key_equal key_equal;typedef typename ht::iterator iterator;typedef typename ht::const_iterator const_iterator;
};
// stl_hashtable.h
template <class Value, class Key, class HashFcn,class ExtractKey, class EqualKey,class Alloc>
class hashtable 
{
public:typedef Key key_type;typedef Value value_type;typedef HashFcn hasher;typedef EqualKey key_equal;
private:hasher hash;key_equal equals;ExtractKey get_key;typedef __hashtable_node<Value> node;vector<node*,Alloc> buckets;size_type num_elements;
public:typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,Alloc> iterator;pair<iterator, bool> insert_unique(const value_type& obj);
};
template <class Value>
struct __hashtable_node
{__hashtable_node* next;Value val;
}

        通过源码可以看到,结构上hash_map和hash_set跟map和set的完全类似,复⽤同⼀个hashtable实现key和key/value结构,hash_set传给hash_table的是两个key,hash_map传给hash_table的是pair<const key, value>

        接下来我们就来对unordered_set/unordered_map进行模拟实现

实现出复用哈希表的框架,并支持insert
 

        key参数就⽤K,value参数就⽤V,哈希表中的数据类型,我们使⽤T。

        map和set相⽐⽽⾔unordered_map和unordered_set的模拟实现类结构更复杂⼀点,但是

⼤框架和思路是完全类似的。

        因为HashTable实现了泛型不知道T参数导致是K,还是pair<K, V>,那么insert内部进⾏插⼊时要⽤K对象转换成整形取模和K⽐较相等,因为pair的value不参与计算取模,且默认⽀持的是key和value⼀起⽐较相等,我们需要时的任何时候只需要⽐较K对象,所以我们在unordered_map和unordered_set层分别实现⼀个MapKeyOfT和SetKeyOfT的仿函数传给HashTable的KeyOfT,然后HashTable中通过KeyOfT仿函数取出T类型对象中的K对象,再转换成整形取模和K⽐较相等

        

//unordered_set.h
#pragma once
#include"HashTable2.h"
namespace The_Song_of_the_end_of_the_world
{template<class K, class Hash = HashFunc<K>>class unordered_set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:pair<iterator, bool> insert(const K& k){return _t.Insert(k);}private:HashTable<K, const K, SetKeyOfT, Hash> _t;};
}
//unordered_map.h
#pragma once
#include"HashTable2.h"
namespace The_Song_of_the_end_of_the_world
{template<class K, class V, class Hash = HashFunc<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:pair<iterator, bool> insert(const pair<K, V>& kv){return _t.Insert(kv);}private:HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _t;};
}
//HashTable2.h
#pragma once
#include<vector>
#include<utility>
#include<string>
using namespace std;
namespace The_Song_of_the_end_of_the_world
{
//STL源码:https://github.com/microsoft/STL/blob/master/stl/inc/hash_table.hinline unsigned long __stl_next_prime(unsigned long n){// Note: assumes long is at least 32 bits.static const int __stl_num_primes = 28;static const unsigned long __stl_prime_list[__stl_num_primes] ={53, 97, 193, 389, 769,1543, 3079, 6151, 12289, 24593,49157, 98317, 196613, 393241, 786433,1572869, 3145739, 6291469, 12582917, 25165843,50331653, 100663319, 201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};const unsigned long* first = __stl_prime_list;const unsigned long* last = __stl_prime_list + __stl_num_primes;const unsigned long* pos = lower_bound(first, last, n);return pos == last ? *(last - 1) : *pos;}template<class T>struct HashNode{T _data;HashNode<T>* _next;HashNode(const T& data):_data(data), _next(nullptr){}};template<class K, class T, class KeyOfT, class Hash>class HashTable{typedef HashNode<T> Node;public:HashTable():_tables(__stl_next_prime(1), nullptr), _n(0){}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];// 当前桶的节点重新映射挂到新表while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}pair<Iterator, bool> Insert(const T& data){KeyOfT kot;auto it = Find(kot(data));if (it != End())return { it, false };Hash hs;// 负载因子==1扩容if (_n == _tables.size()){//HashTable<K, V> newHT;//newHT._tables.resize(_tables.size()*2);//// 遍历旧表将所有值映射到新表//for (auto cur : _tables)//{//	while (cur)//	{//		newHT.Insert(cur->_kv);//		cur = cur->_next;//	}//}//_tables.swap(newHT._tables);vector<Node*> newtables(__stl_next_prime(_tables.size() + 1));for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];// 当前桶的节点重新映射挂到新表while (cur){Node* next = cur->_next;// 插入到新表size_t hashi = hs(kot(cur->_data)) % newtables.size();cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newtables);}size_t hashi = hs(kot(data)) % _tables.size();// 头插Node* newNode = new Node(data);newNode->_next = _tables[hashi];_tables[hashi] = newNode;++_n;return { Iterator(newNode, this), true };}Iterator Find(const K& key){KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key)return { cur, this };cur = cur->_next;}return End();}private://vector<list<pair<K, V>>> _tables;vector<Node*> _tables;size_t _n = 0;  // 实际存储的数据个数};
}

迭代器的实现

        思路:

        iterator实现的⼤框架跟list的iterator思路是⼀致的,⽤⼀个类型封装结点的指针,再通过重载运算符实现,迭代器像指针⼀样访问的⾏为,要注意的是哈希表的迭代器是单向迭代器。

        这⾥的难点是operator++的实现。iterator中有⼀个指向结点的指针,如果当前桶下⾯还有结点,则结点的指针指向下⼀个结点即可。如果当前桶⾛完了,则需要想办法计算找到下⼀个桶。这⾥的难点是反⽽是结构设计的问题,参考上⾯的源码,我们可以看到iterator中除了有结点的指针,还有哈希表对象的指针,这样当前桶⾛完了,要计算下⼀个桶就相对容易多了,⽤key值计算出当前桶位置,依次往后找下⼀个不为空的桶即可。

        begin()返回第⼀个桶中第⼀个节点指针构造的迭代器,这⾥end()返回迭代器可以⽤空表⽰。

        unordered_set的iterator也不⽀持修改,我们把unordered_set的第⼆个模板参数改成const K即可,

HashTable<K, const K, SetKeyOfT, Hash> _ht;

        unordered_map的iterator不⽀持修改key但是可以修改value,我们把unordered_map的第⼆个模板参数pair的第⼀个参数改成const K即可

HashTable<K, pair<const K, V>,MapKeyOfT, Hash> _ht;

        模拟实现

//unordered_set.h
template<class K, class Hash = HashFunc<K>>
class unordered_set
{struct SetKeyOfT{const K& operator()(const K& key){return key;}};
public:typedef typename HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;typedef typename HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}private:HashTable<K, const K, SetKeyOfT, Hash> _t;
};
//unordered_map.htemplate<class K, class V, class Hash = HashFunc<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;typedef typename HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}private:HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _t;};
}
//HashTable2.h
template<class T>
struct HashNode
{T _data;HashNode<T>* _next;HashNode(const T& data):_data(data), _next(nullptr){}
};// 前置声明
template<class K, class T, class KeyOfT, class Hash>
class HashTable;template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>
struct HTIterator
{typedef HashNode<T> Node;typedef HashTable<K, T, KeyOfT, Hash> HT;typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;Node* _node;const HT* _ht;HTIterator(Node* node, const HT* ht):_node(node), _ht(ht){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}Self& operator++(){if (_node->_next)  // 当前还有节点{_node = _node->_next;}else  // 当前桶为空,找下一个不为空的桶的第一个{size_t hashi = Hash()(KeyOfT()(_node->_data)) % _ht->_tables.size();++hashi;while (hashi != _ht->_tables.size()){if (_ht->_tables[hashi]){_node = _ht->_tables[hashi];break;}hashi++;}// 最后一个桶的最后一个节点已经遍历结束,走到end()去,nullptr充当end()if (hashi == _ht->_tables.size()){_node = nullptr;}}return *this;}bool operator!=(const Self& s) const{return _node != s._node;}bool operator==(const Self& s) const{return _node == s._node;}
};template<class K, class T, class KeyOfT, class Hash>
class HashTable
{// 友元声明template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>friend struct HTIterator;typedef HashNode<T> Node;
public:typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;Iterator Begin(){for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]){return Iterator(_tables[i], this);}}return End();}Iterator End(){return Iterator(nullptr, this);}ConstIterator Begin() const{for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]){return ConstIterator(_tables[i], this);}}return End();}ConstIterator End() const{return ConstIterator(nullptr, this);}
};

map实现[]

        unordered_map要⽀持[]主要需要修改insert返回值⽀持,修改HashTable中的insert返回值为

pair<Iterator, bool> Insert(const T& data)

        通过insert实现[]插入

V& operator[](const K& key)
{pair<iterator, bool> ret = insert({ key, V() });return ret.first->second;
}

源码

unordered_set.h

template<class K, class Hash = HashFunc<K>>
class unordered_set
{struct SetKeyOfT{const K& operator()(const K& key){return key;}};
public:typedef typename HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;typedef typename HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}pair<iterator, bool> insert(const K& k){return _t.Insert(k);}bool erase(const K& key){return _t.Erase(key);}iterator find(const K& key){return _t.Find(key);}private:HashTable<K, const K, SetKeyOfT, Hash> _t;
};

unordered_map.h

#pragma once
#include"HashTable2.h"
namespace The_Song_of_the_end_of_the_world
{template<class K, class V, class Hash = HashFunc<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;typedef typename HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.Insert(kv);}V& operator[](const K& key){pair<iterator, bool> ret = insert({ key, V() });return ret.first->second;}bool erase(const K& key){return _t.Erase(key);}iterator find(const K& key){return _t.Find(key);}private:HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _t;};
}

HashTable2.h

#pragma once
#include<vector>
#include<utility>
#include<string>
using namespace std;
namespace The_Song_of_the_end_of_the_world
{template<class K>struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};template<>struct HashFunc<string>{// BKDRsize_t operator()(const string& str){size_t hash = 0;for (auto ch : str){hash += ch;hash *= 131;}return hash;}};inline unsigned long __stl_next_prime(unsigned long n){//STL源码:https://github.com/microsoft/STL/blob/master/stl/inc/hash_table.h// Note: assumes long is at least 32 bits.static const int __stl_num_primes = 28;static const unsigned long __stl_prime_list[__stl_num_primes] ={53, 97, 193, 389, 769,1543, 3079, 6151, 12289, 24593,49157, 98317, 196613, 393241, 786433,1572869, 3145739, 6291469, 12582917, 25165843,50331653, 100663319, 201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};const unsigned long* first = __stl_prime_list;const unsigned long* last = __stl_prime_list + __stl_num_primes;const unsigned long* pos = lower_bound(first, last, n);return pos == last ? *(last - 1) : *pos;}template<class T>struct HashNode{T _data;HashNode<T>* _next;HashNode(const T& data):_data(data), _next(nullptr){}};// 前置声明template<class K, class T, class KeyOfT, class Hash>class HashTable;template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>struct HTIterator{typedef HashNode<T> Node;typedef HashTable<K, T, KeyOfT, Hash> HT;typedef HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;Node* _node;const HT* _ht;HTIterator(Node* node, const HT* ht):_node(node), _ht(ht){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}Self& operator++(){if (_node->_next)  // 当前还有节点{_node = _node->_next;}else  // 当前桶为空,找下一个不为空的桶的第一个{size_t hashi = Hash()(KeyOfT()(_node->_data)) % _ht->_tables.size();++hashi;while (hashi != _ht->_tables.size()){if (_ht->_tables[hashi]){_node = _ht->_tables[hashi];break;}hashi++;}// 最后一个桶的最后一个节点已经遍历结束,走到end()去,nullptr充当end()if (hashi == _ht->_tables.size()){_node = nullptr;}}return *this;}bool operator!=(const Self& s) const{return _node != s._node;}bool operator==(const Self& s) const{return _node == s._node;}};template<class K, class T, class KeyOfT, class Hash>class HashTable{// 友元声明template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>friend struct HTIterator;typedef HashNode<T> Node;public:typedef HTIterator<K, T, T&, T*, KeyOfT, Hash> Iterator;typedef HTIterator<K, T, const T&, const T*, KeyOfT, Hash> ConstIterator;Iterator Begin(){for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]){return Iterator(_tables[i], this);}}return End();}Iterator End(){return Iterator(nullptr, this);}ConstIterator Begin() const{for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]){return ConstIterator(_tables[i], this);}}return End();}ConstIterator End() const{return ConstIterator(nullptr, this);}HashTable():_tables(__stl_next_prime(1), nullptr), _n(0){}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];// 当前桶的节点重新映射挂到新表while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}pair<Iterator, bool> Insert(const T& data){KeyOfT kot;auto it = Find(kot(data));if (it != End())return { it, false };Hash hs;// 负载因子==1扩容if (_n == _tables.size()){//HashTable<K, V> newHT;//newHT._tables.resize(_tables.size()*2);//// 遍历旧表将所有值映射到新表//for (auto cur : _tables)//{//	while (cur)//	{//		newHT.Insert(cur->_kv);//		cur = cur->_next;//	}//}//_tables.swap(newHT._tables);vector<Node*> newtables(__stl_next_prime(_tables.size() + 1));for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];// 当前桶的节点重新映射挂到新表while (cur){Node* next = cur->_next;// 插入到新表size_t hashi = hs(kot(cur->_data)) % newtables.size();cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newtables);}size_t hashi = hs(kot(data)) % _tables.size();// 头插Node* newNode = new Node(data);newNode->_next = _tables[hashi];_tables[hashi] = newNode;++_n;return { Iterator(newNode, this), true };}Iterator Find(const K& key){KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key)return { cur, this };cur = cur->_next;}return End();}bool Erase(const K& key){KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}prev = cur;cur = cur->_next;}return false;}private://vector<list<pair<K, V>>> _tables;vector<Node*> _tables;size_t _n = 0;  // 实际存储的数据个数};
}

        本期内容就到这里了,喜欢请点个赞谢谢

封面图自取:

http://www.dtcms.com/a/390727.html

相关文章:

  • 圆柱永磁体磁场及梯度快速计算与可视化程序
  • 种群演化优化算法:原理与Python实现
  • 基于IPDRR模型能力,每个能力的概念及所要具备的能力产品
  • NUST技术漫谈:当非结构化数据遇见状态跟踪——一场静默的技术革命
  • 在技术无人区开路,OPPO的指南针是“人”
  • AI与NPC发展过程及技术
  • Redis数据库(三)—— 深入解析Redis三种高可用架构:主从复制、哨兵与集群模式
  • (leetcode) 力扣100 13最大子序和(动态规划卡达内算法分治法)
  • SpringBoot整合JUnit:单元测试从入门到精通
  • MySQL三范式详细解析
  • GitHub 仓库权限更改
  • 卷积神经网络(CNN)核心知识点总结
  • Python数据挖掘之基础分类模型_朴素贝叶斯
  • 数字工业化的终极形态:人、机器与算法的三重奏
  • [x-cmd] 在 Linux 与 MacOS 安装与使用 x-cmd
  • wkhtmltopdf 命令参数及作用大全
  • Windows路径转换成Cygwin中的Unix路径的方法
  • JavaWeb之Web资源与Servlet详解
  • [视图功能8] 图表视图:柱状图、折线图与饼图配置实战
  • TDengine IDMP 基本功能——数据可视化(5. 表格)
  • ViTables 安装与 HDF5 数据可视化全指南
  • Python爬虫实战:研究Pandas,构建最新网游数据采集与智能推荐系统
  • 在.NET中实现RabbitMQ客户端的优雅生命周期管理及二次封装
  • .NET自定义数据操作日志
  • 从“连不上网”到“玩转路由”:路由器配置与静态路由实战(小白也能轻松掌握)
  • R语言 生物信息如何解读geo数据集的说明,如何知道样本分类, MDA PCa 79(n = 3)n的含义
  • 你的第一个Node.js应用:Hello World
  • 【LVS入门宝典】LVS核心原理与实战:Real Server(后端服务器)高可用配置指南
  • TPAMI 25 ICML 25 Oral | 顶刊顶会双认证!SparseTSF以稀疏性革新长期时序预测!
  • rep()函数在 R 中的用途详解