当前位置: 首页 > news >正文

LoRA 微调后幻觉排查 Checklist

1. 数据层面

  • 数据量够吗?

    • 少量样本(几千条以下)容易导致过拟合和幻觉。

  • 数据是否高质量?

    • 是否有事实错误、模糊答案?

  • 覆盖范围够吗?

    • 是否只覆盖了窄领域,而推理时遇到“未见过”的问建议:扩大数据集规模、清洗低质量样本、增加多样化覆盖。

2. 模型层面

  • 基座模型本身是否容易幻觉?

    • 有些大模型本来就事实性较差,LoRA 无法根本修复。

  • LoRA rank / α 参数是否过小?

    • 表达能力不足,导致模型无法学到可靠约束。

  • 是否考虑了 PEFT 以外的方法?

    • 比如 Adapter、Prefix Tuning,某些任务比 LoRA 更合适。

建议:调大 LoRA rank,或者尝试混合参数高效微调方法。

3. 训练策略层面

  • 训练目标是否合理?

    • 仅 SFT(监督微调)可能让模型“会说话”,但不会“说真话”。

  • 是否做了对齐训练(RLHF / DPO / contrastive loss)?

    • 没有对齐,模型更容易随便编造。

  • 是否检查过过拟合?

    • 训练集上表现很好,但验证集/推理时出现幻觉 → 过拟合信号。

建议:在 SFT 后补充对齐训练,引入 fact-check loss 或 RLHF。

4. 推理层面

  • 解码策略是否过于自由?

    • Temperature 太高、top-p 太大 → 输出更随机 → 幻觉增多。

  • 是否提供了足够的上下文?

    • 提示词没给足背景,模型就会凭空填补。

  • 是否尝试过工具调用 / RAG?

    • 纯模型生成往往难以保证事实性,可以加外部知识库检索。

建议:

  • 降低 temperature(如 0.2~0.5),收紧 top-p。

  • 优化 prompt,加入“不要编造,如果不知道就回答不知道”。

  • 加入 RAG(检索增强生成),让模型有知识支撑。

总结路径

  1. 先看数据 → 够不够、准不准。

  2. 再看 LoRA 参数 → rank、适配能力。

  3. 再看训练方式 → 是否仅做了 SFT,缺乏对齐。

  4. 最后看推理设置 → 解码参数、上下文、工具辅助。

http://www.dtcms.com/a/350098.html

相关文章:

  • JVM之【执行引擎系统】
  • IntelJ IDEA配置GitLab教程
  • 浅谈为什么尾递归更高效?——从调用栈和汇编的视角
  • 第三方软件检测机构的核心作用(二)
  • 【AI编程】如何快速通过AI IDE集成开发工具来生成一个简易留言板系统
  • 区块链技术原理(18)-以太坊共识机制
  • 微美全息(NASDAQ:WIMI)研究基于区块链的空间数据交易框架
  • 股指期货保证金和点数是什么东西?
  • Python实现点云投影到直线、平面、柱面和球面
  • 视频孪生技术赋能电力巡检:从“平面监控”到“立体智控”的跨越
  • Vue 3 customRef 完全指南:自定义响应式引用的终极教程
  • 前端面试题vue合集
  • 华为云Stack环境中计算资源,存储资源,网络资源发放前的准备工作(中篇)
  • week4-[二维数组]平面上的点
  • win11中系统的WSL安装Centos以及必要组件
  • 基于 Prometheus+Alertmanager+Grafana 打造监控报警后台(一)-Prometheus介绍及安装
  • 企业级监控可视化系统 Prometheus + Grafana
  • 检索模型与RAG
  • 【Day 13】189.轮转数组
  • 项目文章|MeRIP-seq助力解析m6A RNA甲基化与康乃馨花衰老的调控机制
  • Day8--HOT100--160. 相交链表,206. 反转链表,234. 回文链表,876. 链表的中间结点
  • 30.throw抛异常
  • 项目前后端分离部署
  • LVM基本操作
  • LeetCode100-189轮转数组
  • 20.15 Hugging Face Whisper-large-v2中文微调实战:LoRA+混合精度单卡训练指南,3倍效率省90%显存
  • 正则表达式学习(基础)
  • AUTOSAR进阶图解==>AUTOSAR_RS_Features
  • 电脑隐私安全防护|快速清理Windows系统/浏览器/应用数据,支持文件粉碎与磁盘级擦除!
  • 从MyJUnit反思Java项目的工程实践(版本控制篇)