数学建模--Topsis(Python)
import numpy as npimport pandas as pd
假设有 3 个方案,每个方案有 4 个评价指标,其中前 2 个为效益型指标,后 2 个为成本型指标
原始数据(3个方案,4个指标)data = np.array(\[  \[80, 90, 30, 20],  \[70, 85, 25, 15],  \[90, 95, 35, 25]])指标类型(1表示效益型,0表示成本型)indicator\_type = \[1, 1, 0, 0]指标权重weights = np.array(\[0.2, 0.3, 0.25, 0.25])
(三)数据标准化处理
def normalize\_data(data, indicator\_type):  m, n = data.shape  normalized\_data = np.zeros\_like(data, dtype=np.float64)  for j in range(n):  col = data\[:, j]  max\_val = np.max(col)  min\_val = np.min(col)  if indicator\_type\[j] == 1: # 效益型指标  normalized\_data\[:, j] = (col - min\_val) / (max\_val - min\_val)  else: # 成本型指标  normalized\_data\[:, j] = (max\_val - col) / (max\_val - min\_val)  return normalized\_datanormalized\_data = normalize\_data(data, indicator\_type)print("标准化矩阵:")print(normalized\_data)
此函数根据指标类型对数据进行标准化,对于效益型指标,采用公式zij=xij−minjxijmaxjxij−minjxijz_{ij}=\frac{x_{ij}-\min_j x_{ij}}{\max_j x_{ij}-\min_j x_{ij}}zij=maxjxij−minjxijxij−minjxij;对于成本型指标,采用公式zij=maxjxij−xijmaxjxij−minjxijz_{ij}=\frac{\max_j x_{ij}-x_{ij}}{\max_j x_{ij}-\min_j x_{ij}}zij=maxjxij−minjxijmaxjxij−xij。
(四)构建加权标准化矩阵
weighted\_normalized\_data = normalized\_data \* weights
print(weighted\_normalized\_data)
将标准化矩阵中的每个元素乘以对应的权重,得到加权标准化矩阵。
(五)确定正理想解和负理想解
\# 正理想解(每个指标取最大值)positive\_ideal = np.max(weighted\_normalized\_data, axis=0)\# 负理想解(每个指标取最小值)negative\_ideal = np.min(weighted\_normalized\_data, axis=0)print("正理想解:", positive\_ideal)print("负理想解:", negative\_ideal)
(六)计算各方案与正、负理想解的距离
def calculate\_distance(weighted\_data, ideal):  m, n = weighted\_data.shape  distances = np.zeros(m)  for i in range(m):  distances\[i] = np.sqrt(np.sum((weighted\_data\[i, :] - ideal) \*\*2))  return distancesd\_plus = calculate\_distance(weighted\_normalized\_data, positive\_ideal)d\_minus = calculate\_distance(weighted\_normalized\_data, negative\_ideal)print("与正理想解的距离:", d\_plus)print("与负理想解的距离:", d\_minus)
采用欧氏距离公式计算各方案与正、负理想解的距离。
(七)计算相对贴近度并排序
\# 计算相对贴近度c\_values = d\_minus / (d\_plus + d\_minus)print("相对贴近度:", c\_values)\# 排序(从大到小)sorted\_indices = np.argsort(c\_values)\[::-1]print("方案排序(从优到劣):", sorted\_indices + 1) # +1是因为方案编号从1开始
根据相对贴近度Ci=di−di++di−C_i=\frac{d_i^-}{d_i^+ + d_i^-}Ci=di++di−di−计算值,并按照从大到小的顺序对方案进行排序