barker-OFDM模糊函数原理及仿真
文章目录
- 前言
- 一、巴克码序列
- 二、barker-OFDM 信号
- 1、OFDM 信号表达式
- 2、模糊函数表达式
- 三、MATLAB 仿真
- 1、MATLAB 核心源码
- 2、仿真结果
- ①、barker-OFDM 模糊函数
- ②、barker-OFDM 距离分辨率
- ③、barker-OFDM 速度分辨率
- ④、barker-OFDM 等高线图
- 四、资源自取
前言
本文进行 barker-OFDM 的原理讲解及仿真,首先看一下 barker-OFDM 的模糊函数仿真效果:
一、巴克码序列
巴克码与 m 序列均属于二进制相位编码,巴克码自相关函数可以表示为:
R ( k ) = { N k = 0 ± 1 , 0 k ≠ 0 R(k)= \begin{cases} N & k=0 \\ \pm1,0 & k\neq0 & \end{cases} R(k)={N±1,0k=0k=0
根据上述公式可得,巴克码的码片长度越长,其自相关特性越强,因此其编码性能符合 Resbnick 定义中的最佳标准。然而,巴克码的码元长度是有限制的,已知仅有 7 种巴克码具有此特性,具体序列长度为 2、3、4、5、7、11、13,详见下表。在这些序列中,长度为 2 和 4 的巴克码的补码同样表现出相同的自相关性能。
二、barker-OFDM 信号
1、OFDM 信号表达式
OFDM 信号提供了一种在频域上设计波形、时域上输出波形的 DFT 数字调制方式。OFDM 信号的数学表达式为:
B ( t ) = ∑ k = 0 N − 1 b k e j 2 π f k t = ∑ k = 0 N − 1 b k e j 2 π ( f 0 + k Δ f ) t B(t)=\sum_{k=0}^{N-1}b_ke^{j2\pi f_kt}=\sum_{k=0}^{N-1}b_ke^{j2\pi (f_0+k\Delta f)t} B(t)=k=0∑N−1bkej2πfkt=k=0∑N−1bkej2π(f0+kΔf)t
- b k :调制序列,为第 k 路子信道中的复输入数据 b_k:调制序列,为第 k 路子信道中的复输入数据 bk:调制序列,为第k路子信道中的复输入数据
- f k = f 0 + k Δ f f_k=f_0+k \Delta f fk=f0+kΔf, f 0 f_0 f0 为起始频率, Δ f \Delta f Δf 为频率间隔
2、模糊函数表达式
模糊函数是雷达探测波形分析的重要工具,通过对信号波形的模糊函数分析,可以得到信号波形的距离分辨率、多普勒分辨率及多普勒容限特性。
连续时间信号模糊函数的定义为:
χ ( τ , f d ) = 1 E ∫ − ∞ ∞ b ( t ) b ∗ ( t − τ ) e j 2 π f d t d t \chi (\tau,f_d)=\frac{1}{E} \int_{-\infty}^{\infty} b(t)b^{*}(t-\tau)e^{j2\pi f_dt} \,dt χ(τ,fd)=E1∫−∞∞b(t)b∗(t−τ)ej2πfdtdt
- 式中,E为信号的总能量;
离散时间序列的模糊函数表示为:
χ ( m , k d ) = 1 E c ∑ n e n e n − m ∗ e j 2 π N k d n \chi (m,k_d)=\frac{1}{E_c}\sum_{n}e_ne^{*}_{n-m}e^{j\frac{2\pi}{N}k_dn} χ(m,kd)=Ec1n∑enen−m∗ejN2πkdn
- 式中, m = f s × τ m=f_s×\tau m=fs×τ, f s f_s fs 为采样率;
- k d = f d × f s N k_d=\frac{f_d×f_s}{N} kd=Nfd×fs,N为采样点数
由于 M 序列是离散序列,结合上面公式可知 M-OFDM 信号的模糊函数为:
χ b n ( m , k d ) = 1 E z ∑ n b ( n ) b ∗ ( n + k d ) e − j 2 π n m N \chi_{b_n}(m,k_d)=\frac{1}{E_z}\sum_{n}b(n)b^{*}(n+k_d)e^{-j\frac{2\pi nm}{N}} χbn(m,kd)=Ez1n∑b(n)b∗(n+kd)e−jN2πnm
三、MATLAB 仿真
1、MATLAB 核心源码
barker_ofdm.m
%% M-OFDM信号产生
for i = 1:numOFDMsignel(i,:) = barker(i)*exp(1j*2*pi*((f0 + B*(i-1))*t)); % OFDM 信号产生 将ZC序列与相应的频率因子相乘OFDMsignel(i,:) = awgn(OFDMsignel(i,:),SNR,'measured'); % 添加高斯白噪声到OFDM信号中,以实现指定的信噪比。
endambi = abs(xcorr2(bsxfun(@times, x_tmp, exp(1j*2*pi*fd'*t)),x_tmp)); %计算模糊函数 对信号做共轭相乘互相关
2、仿真结果
①、barker-OFDM 模糊函数
Barker-OFDM 信号其模糊函数的峰值较尖锐,显示出较好的时间分辨率。但由于存在较明显的旁瓣,频率分辨率受到了一定影响。因此,Barker-OFDM 信号在需要较高时间分辨率的场景中表现较好,但在高噪声环境下,旁瓣可能导致干扰。
②、barker-OFDM 距离分辨率
Barker-OFDM 信号的零多普勒截面显示出一个较尖锐的峰值,虽然存在一些较小的副峰,但总体峰值仍然较为集中,意味着它的时间定位能力较强,能够较为精确地区分不同的目标。
③、barker-OFDM 速度分辨率
barker-OFDM 信号的零延时截面均展现出极其尖锐的主峰,旁瓣非常小,这表明其在零延时处均具有最优秀的频率分辨率,能够在复杂环境下非常精准地定位频率位置,提供最精确的信号识别。
④、barker-OFDM 等高线图
Barker-OFDM 信号的模糊函数具有窄主峰、低旁瓣、对称分布的特点,兼具相位编码的时延分辨力和 OFDM 的多普勒鲁棒性,适用于对时延和多普勒分辨要求较高的场景(如雷达目标检测与参数估计),同时具备较强的抗干扰能力。
四、资源自取
下载链接:barker-OFDM模糊函数原理及仿真
代码注释标注清晰:
我的qq:2442391036,欢迎交流!