当前位置: 首页 > news >正文

【Java架构师体系课 | MySQL篇】③ Explain执行计划详解

目录

一、Explain工具介绍

二、Explain分析示例

三、Explain 两个变种

四、Explain中的列

1. id列

2. select_type列

3. table列

4. partitions列

5. type列

6. possible_keys列

7. key列

8. key_len列

9. ref列

10. rows列

11. filtered 列

12. Extra列


一、Explain工具介绍

使用EXPLAIN关键字可以模拟优化器执行SQL语句,分析你的查询语句或是结构的性能瓶颈

在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询会返回执行计划的信息,而不是执行这条SQL

注意:如果 from 中包含子查询,仍会执行该子查询,将结果放入临时表中。

二、Explain分析示例

示例表:
DROP TABLE IF EXISTS `actor`; 
CREATE TABLE `actor` (`id` int(11) NOT NULL,`name` varchar(45) DEFAULT NULL,`update_time` datetime DEFAULT NULL,PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;INSERT INTO `actor` (`id`, `name`, `update_time`) VALUES (1,'a','2017-12-22 15:27:18'), (2,'b','2017-12-22 15:27:18'), (3,'c','2017-12-22 15:27:18');DROP TABLE IF EXISTS `film`;
CREATE TABLE `film` (`id` int(11) NOT NULL AUTO_INCREMENT,`name` varchar(10) DEFAULT NULL,PRIMARY KEY (`id`),KEY `idx_name` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;INSERT INTO `film` (`id`, `name`) VALUES (3,'film0'),(1,'film1'),(2,'film2');DROP TABLE IF EXISTS `film_actor`;
CREATE TABLE `film_actor` (`id` int(11) NOT NULL,`film_id` int(11) NOT NULL,`actor_id` int(11) NOT NULL,`remark` varchar(255) DEFAULT NULL,PRIMARY KEY (`id`),KEY `idx_film_actor_id` (`film_id`,`actor_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;INSERT INTO `film_actor` (`id`, `film_id`, `actor_id`) VALUES (1,1,1),(2,1,2),(3,2,1);

actor演员表:有一个主键索引。

film导演表:有主键索引和二级索引idx_name。

file_actor中间表:有联合索引。

mysql> explain select * from actor;

在查询中的每个表会输出一行,如果有两个表通过 join 连接查询,那么会输出两行。

三、Explain 两个变种

1)explain extended:会在 explain  的基础上额外提供一些查询优化的信息。紧随其后通过 show warnings 命令可以得到优化后的查询语句,从而看出优化器优化了什么。额外还有 filtered 列,是一个百分比的值,rows * filtered/100 可以估算出将要和 explain 中前一个表进行连接的行数(前一个表指 explain 中的id值比当前表id值小的表)。

mysql> explain extended select * from film where id = 1;

mysql> show warnings;

2)explain partitions:相比 explain 多了个 partitions 字段,如果查询是基于分区表的话,会显示查询将访问的分区。

四、Explain中的列

接下来我们将展示 explain 中每个列的信息。

1. id列

id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的顺序增长的。

id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。

2. select_type列

select_type 表示对应行是简单还是复杂的查询。

1)simple:简单查询。查询不包含子查询和union

mysql> explain select * from film where id = 2;

2)primary:复杂查询中最外层的 select

3)subquery:包含在 select 中的子查询(不在 from 子句中)

4)derived:包含在 from 子句中的子查询。MySQL会将结果存放在一个临时表中,也称为派生表(derived的英文含义)

用这个例子来了解 primary、subquery 和 derived 类型:

mysql> set session optimizer_switch='derived_merge=off';   #关闭mysql5.7新特性对衍生表的合并优化
mysql> explain select (select 1 from actor where id = 1) from (select * from film where id = 1) der;

mysql> set session optimizer_switch='derived_merge=on';	#还原默认配置

5)union:在 union 中的第二个和随后的 select

mysql> explain select 1 union all select 1;

3. table列

这一列表示 explain 的一行正在访问哪个表。

当 from 子句中有子查询时,table列是格式,表示当前查询依赖 id=N 的查询,于是先执行 id=N 的查询。

当有 union 时,UNION RESULT 的 table 列的值为,1和2表示参与 union 的 select 行id。

4. partitions列

如果查询是基于分区表的话,partitions 字段会显示查询将访问的分区。

5. type列

这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概范围。

依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL

一般来说,得保证查询达到range级别,最好达到ref

NULL:mysql能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。例如:在索引列中选取最小值,可以单独查找索引来完成,不需要在执行时访问表

mysql> explain select min(id) from film;

const, system:mysql能对查询的某部分进行优化并将其转化成一个常量(可以看show warnings 的结果)。用于 primary key 或 unique key 的所有列与常数比较时,所以表最多有一个匹配行,读取1次,速度比较快。system是const的特例,表里只有一条元组匹配时为system

mysql> explain extended select * from (select * from film where id = 1) tmp;

mysql> show warnings;

eq_ref:primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。这可能是在 const 之外最好的联接类型了,简单的 select 查询不会出现这种 type。

mysql> explain select * from film_actor left join film on film_actor.film_id = film.id;

ref:相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要和某个值相比较,可能会找到多个符合条件的行。

1. 简单 select 查询,name是普通索引(非唯一索引)

mysql> explain select * from film where name = 'film1';

mysql> explain select film_id from film left join film_actor on film.id = film_actor.film_id;

range:范围扫描通常出现在 in(), between ,> ,= 等操作中。使用一个索引来检索给定范围的行。

mysql> explain select * from actor where id > 1;

index:扫描全索引就能拿到结果,一般是扫描某个二级索引,这种扫描不会从索引树根节点开始快速查找,而是直接对二级索引的叶子节点遍历和扫描,速度还是比较慢的,这种查询一般为使用覆盖索引,二级索引一般比较小,所以这种通常比ALL快一些。

🔵 ref / range 是“使用索引快速查找”

根据条件直接定位部分索引。

🔴 index 是“扫描整个索引”

遍历所有叶子,不走快速查找路径。

但因为索引比表小,所以比 ALL 快。

mysql> explain select * from film;

ALL:即全表扫描,扫描你的聚簇索引的所有叶子节点。通常情况下这需要增加索引来进行优化了。

mysql> explain select * from actor;

6. possible_keys列

这一列显示查询可能使用哪些索引来查找。 

explain 时可能出现 possible_keys 有列,而 key 显示 NULL 的情况,这种情况是因为表中数据不多,mysql认为索引对此查询帮助不大,选择了全表查询。 

如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可以创造一个适当的索引来提高查询性能,然后用 explain 查看效果。

7. key列

这一列显示mysql实际采用哪个索引来优化对该表的访问。

如果没有使用索引,则该列是 NULL。如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 force index、ignore index。

8. key_len列

这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。 

举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成,并且每个int是4字节。通过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执行索引查找。

mysql> explain select * from film_actor where film_id = 2;

key_len计算规则如下:

  • 字符串,char(n)和varchar(n),5.0.3以后版本中,n均代表字符数,而不是字节数,如果是utf-8,一个数字或字母占1个字节,一个汉字占3个字节
    • char(n):如果存汉字长度就是 3n 字节
    • varchar(n):如果存汉字则长度是 3n + 2 字节,加的2字节用来存储字符串长度,因为varchar是变长字符串
  • 数值类型
    • tinyint:1字节
    • smallint:2字节
    • int:4字节
    • bigint:8字节  
  • 时间类型 
    • date:3字节
    • timestamp:4字节
    • datetime:8字节
  • 如果字段允许为 NULL,需要1字节记录是否为 NULL

索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半部分的字符提取出来做索引。

9. ref列

索引是根据什么值来查的?,也就是查找依据。这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),字段名(例:film.id)

10. rows列

MySQL 预计要扫描多少行(越少越好)。这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数。

11. filtered 列

该列是一个百分比的值,rows * filtered/100 可以估算出将要和 explain 中前一个表进行连接的行数(前一个表指 explain 中的id值比当前表id值小的表)。

12. Extra列

这一列展示的是额外信息。常见的重要值如下: 

1)Using index:使用覆盖索引

覆盖索引定义:mysql执行计划explain结果里的key有使用索引,如果select后面查询的字段都可以从这个索引的树中获取,这种情况一般可以说是用到了覆盖索引,extra里一般都有using index;覆盖索引一般针对的是辅助索引,整个查询结果只通过辅助索引就能拿到结果,不需要通过辅助索引树找到主键,再通过主键去主键索引树里获取其它字段值

mysql> explain select film_id from film_actor where film_id = 1;

2)Using where:使用 where 语句来处理结果,并且查询的列未被索引覆盖

mysql> explain select * from actor where name = 'a';

3)Using index condition:查询的列不完全被索引覆盖,where条件中是一个前导列的范围;

mysql> explain select * from film_actor where film_id > 1;

4)Using temporary:mysql需要创建一张临时表来处理查询。出现这种情况一般是要进行优化的,首先是想到用索引来优化。

1. actor.name没有索引,此时创建了张临时表来distinct

mysql> explain select distinct name from actor;

2. film.name建立了idx_name索引,此时查询时extra是using index,没有用临时表

mysql> explain select distinct name from film;

5)Using filesort:将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。这种情况下一般也是要考虑使用索引来优化的。

1. actor.name未创建索引,会浏览actor整个表,保存排序关键字name和对应的id,然后排序name并检索行记录

mysql> explain select * from actor order by name;

2. film.name建立了idx_name索引,此时查询时extra是using index

mysql> explain select * from film order by name;

6)Select tables optimized away:使用某些聚合函数(比如 max、min)来访问存在索引的某个字段

mysql> explain select min(id) from film;

http://www.dtcms.com/a/613518.html

相关文章:

  • Bugku-web题目-xxx二手交易市场
  • 织梦 图片网站武冈 网站建设
  • WebForms Button:深入解析与最佳实践
  • 深度学习实战(基于pytroch)系列(二十)二维卷积层
  • 每日两道算法(2)
  • Ajax 数据请求:从 XMLHttpRequest 到现代前端数据交互的演进
  • Docker 容器连接
  • 手机网站的必要性建设网络平台 请示
  • Vue3 实现 12306 原版火车票组件:从像素级还原到自适应适配【源码】
  • 玄机-第八章 内存马分析-java03-fastjson
  • 人工智能算法优化YOLO的目标检测能力
  • 网站建设常用的编程语言apache设置网站网址
  • 漳州市网站建设费用p2p的网站开发
  • JAVA之二叉树
  • Gitee完全新手教程
  • 具身智能-8家国内外典型具身智能VLA模型深度解析
  • Go 边缘计算在智能汽车产业的应用
  • (五)自然语言处理笔记——迁移学习
  • 长春网站设计长春网络推广项目计划书包含哪些内容
  • ubuntu 25.10 安装Podman
  • 工业自动化核心系统与概念综述
  • 一步一步学习使用LiveBindings() TListView的进阶使用()
  • 全爱科技携智能计算解决方案亮相高交会
  • 建设部招标网站新闻型网站建设
  • MFC中使用GDI+ 自定义等待界面
  • 信息论(五):联合熵与条件熵
  • flume抽取kafka数据到kafka,数据无法从topicA抽取到topicB
  • 基于最小权限原则的云计算Amazon VPC多层应用安全架构设计
  • 11.2 FastGPT部署指南:Docker一键部署企业级RAG框架
  • 网站建设结课总结贵阳网络推广优化