当前位置: 首页 > news >正文

视觉Slam14讲笔记第6讲非线性优化

一、g2o方法使用过程中的问题

由于自身编译器是c++14标准,但是g2o的版本是17标准。导致引用g2o库时有相关报错信息,比如:

g2o/stuff/tuple_tools.h:41:71: error: type/value mismatch at argument 1 in template parameter list for ‘template<long unsigned int _Num> using make_index_sequence = std::make_integer_sequence<long unsigned int, _Num>41 |       f, t, i, std::make_index_sequence<std::tuple_size<std::decay<T>>>());

等等。
可做如下几个操作,
1.在编译g2o库时强制使用c++14标准,并且指定相应的安装路径【如果环境只有一个g2o版本,可以不用这个操作】

cmake ..   -DCMAKE_CXX_STANDARD=14   -DCMAKE_CXX_STANDARD_REQUIRED=ON   -DCMAKE_BUILD_TYPE=Release   -DCMAKE_INSTALL_PREFIX=【安装目录】/slambook2-master/3rdparty/g2o/install   -DG2O_USE_CXX11_ABI=ON   -DG2O_BUILD_EXAMPLES=OFF   -DG2O_BUILD_APPS=OFF

2.在编译使用g2o非线性优化的代码时,指定目录去寻找g2o以及相应的库

project(g2oCurveFitting)cmake_minimum_required(VERSION 3.10)find_package(Eigen3 REQUIRED)
find_package(OpenCV REQUIRED)set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)set(G2O_INCLUDE_DIRS "--------/slam14/slambook2-master/3rdparty/g2o/install/include")
set(G2O_LIBRARIES ---------/slam14/slambook2-master/3rdparty/g2o/install/lib/libg2o_core.so---------/slam14/slambook2-master/3rdparty/g2o/install/lib/libg2o_stuff.so
)include_directories(${EIGEN3_INCLUDE_DIR} ${OpenCV_INCLUDE_DIRS} ${G2O_INCLUDE_DIRS})add_executable(g2oCurveFitting g2oCurveFitting.cpp)
target_link_libraries(g2oCurveFitting ${OpenCV_LIBS} ${G2O_LIBRARIES})

3.相应的修改代码
最终执行代码如下:

#include <g2o/core/base_unary_edge.h>
#include <g2o/core/base_vertex.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/eigen/linear_solver_eigen.h>#include <Eigen/Core>
#include <chrono>
#include <cmath>
#include <iostream>
#include <opencv2/core/core.hpp>using namespace std;// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {public:EIGEN_MAKE_ALIGNED_OPERATOR_NEW// 重置virtual void setToOriginImpl() override { _estimate << 0, 0, 0; }// 更新virtual void oplusImpl(const double *update) override {_estimate += Eigen::Vector3d(update);}// 存盘和读盘:留空virtual bool read(istream &in) {}virtual bool write(ostream &out) const {}
};// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge: public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWCurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}// 计算曲线模型误差virtual void computeError() override {const CurveFittingVertex *v =static_cast<const CurveFittingVertex *>(_vertices[0]);const Eigen::Vector3d abc = v->estimate();_error(0, 0) = _measurement -std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));}// 计算雅可比矩阵virtual void linearizeOplus() override {const CurveFittingVertex *v =static_cast<const CurveFittingVertex *>(_vertices[0]);const Eigen::Vector3d abc = v->estimate();double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);_jacobianOplusXi[0] = -_x * _x * y;_jacobianOplusXi[1] = -_x * y;_jacobianOplusXi[2] = -y;}virtual bool read(istream &in) {}virtual bool write(ostream &out) const {}public:double _x;  // x 值, y 值为 _measurement
};int main(int argc, char **argv) {double ar = 1.0, br = 2.0, cr = 1.0;   // 真实参数值double ae = 2.0, be = -1.0, ce = 5.0;  // 估计参数值int N = 100;                           // 数据点double w_sigma = 1.0;                  // 噪声Sigma值double inv_sigma = 1.0 / w_sigma;cv::RNG rng;  // OpenCV随机数产生器vector<double> x_data, y_data;  // 数据for (int i = 0; i < N; i++) {double x = i / 100.0;x_data.push_back(x);y_data.push_back(exp(ar * x * x + br * x + cr) +rng.gaussian(w_sigma * w_sigma));}// 构建图优化,先设定g2otypedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>>BlockSolverType;  // 每个误差项优化变量维度为3,误差值维度为1typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType>LinearSolverType;  // 线性求解器类型// 梯度下降方法,可以从GN, LM, DogLeg 中选auto solver = new g2o::OptimizationAlgorithmGaussNewton(std::make_unique<BlockSolverType>(std::make_unique<LinearSolverType>()));g2o::SparseOptimizer optimizer;  // 图模型optimizer.setAlgorithm(solver);  // 设置求解器optimizer.setVerbose(true);      // 打开调试输出// 往图中增加顶点CurveFittingVertex *v = new CurveFittingVertex();v->setEstimate(Eigen::Vector3d(ae, be, ce));v->setId(0);optimizer.addVertex(v);// 往图中增加边for (int i = 0; i < N; i++) {CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);edge->setId(i);edge->setVertex(0, v);            // 设置连接的顶点edge->setMeasurement(y_data[i]);  // 观测数值edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 /(w_sigma * w_sigma));  // 信息矩阵:协方差矩阵之逆optimizer.addEdge(edge);}// 执行优化cout << "start optimization" << endl;chrono::steady_clock::time_point t1 = chrono::steady_clock::now();optimizer.initializeOptimization();optimizer.optimize(10);chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used =chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "solve time cost = " << time_used.count() << " seconds. " << endl;// 输出优化值Eigen::Vector3d abc_estimate = v->estimate();cout << "estimated model: " << abc_estimate.transpose() << endl;return 0;
}

执行结果为:

start optimization
iteration= 0     chi2= 376785.128234     time= 0.00107027        cumTime= 0.00107027     edges= 100     schur= 0
iteration= 1     chi2= 35673.566018      time= 0.000846484       cumTime= 0.00191675     edges= 100     schur= 0
iteration= 2     chi2= 2195.012304       time= 0.000880363       cumTime= 0.00279711     edges= 100     schur= 0
iteration= 3     chi2= 174.853126        time= 0.000863566       cumTime= 0.00366068     edges= 100     schur= 0
iteration= 4     chi2= 102.779695        time= 0.000838804       cumTime= 0.00449948     edges= 100     schur= 0
iteration= 5     chi2= 101.937194        time= 0.000842615       cumTime= 0.0053421      edges= 100     schur= 0
iteration= 6     chi2= 101.937020        time= 0.000968364       cumTime= 0.00631046     edges= 100     schur= 0
iteration= 7     chi2= 101.937020        time= 0.000840048       cumTime= 0.00715051     edges= 100     schur= 0
iteration= 8     chi2= 101.937020        time= 0.000848594       cumTime= 0.00799911     edges= 100     schur= 0
iteration= 9     chi2= 101.937020        time= 0.000839935       cumTime= 0.00883904     edges= 100     schur= 0
solve time cost = 0.0102802 seconds. 
estimated model: 0.890912   2.1719 0.943629

二、手写高斯牛顿代码以及执行结果

#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Dense>
#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace Eigen;int main(int argc, char** argv) {double ar = 1.0, br = 2.0, cr = 1.0;   // 真实参数值double ae = 2.0, be = -1.0, ce = 5.0;  // 估计参数值int N = 100;                           // 数据点double w_sigma = 1.0;              // 噪声sigma值double inv_sigma = 1.0 / w_sigma;  // 噪声的倒数cv::RNG rng;                       // Opencv随机数生成器// 人为制造数据vector<double> x_data, y_data;  // 数据点for (int i = 0; i < N; i++) {double x = i / 100.0;x_data.push_back(x);y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma));}// 开始Gauss-Newton迭代// 迭代次数int iterations = 100;double cost = 0, lastCost = 0;  // 本次迭代的cost和上次迭代的costchrono::steady_clock::time_point t1 = chrono::steady_clock::now();for (int iter = 0; iter < iterations; iter++) {Matrix3d H = Matrix3d::Zero();  // HessianVector3d b = Vector3d::Zero();  // biascost = 0;for (int i = 0; i < N; i++) {double xi = x_data[i], yi = y_data[i];double error = yi - exp(ae * xi * xi + be * xi + ce);Vector3d J;  // 雅克比矩阵J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce);J[1] = -xi * exp(ae * xi * xi + be * xi + ce);J[2] = -exp(ae * xi * xi + be * xi + ce);H += inv_sigma * inv_sigma * J * J.transpose();b += -inv_sigma * inv_sigma * error * J;cost += error * error;}// 求解线性方程Hx = bVector3d dx = H.ldlt().solve(b);if (isnan(dx[0])) {cout << "result is nan" << endl;break;}if (iter > 0 && cost >= lastCost) {cout << "cost: " << cost << " >= last cost: " << lastCost << endl;break;}ae += dx[0];be += dx[1];ce += dx[2];lastCost = cost;cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose()<< "\t\testimated parmas: " << ae << "," << be << "," << ce << endl;}chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used =chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "time used: " << time_used.count() << " seconds. " << endl;cout << "estimated params: " << ae << ", " << be << ", " << ce << endl;return 0;
}

结果如下:

total cost: 3.19575e+06,                update: 0.0455771  0.078164 -0.985329           estimated parmas: 2.04558,-0.921836,4.01467
total cost: 376785,             update:  0.065762  0.224972 -0.962521           estimated parmas: 2.11134,-0.696864,3.05215
total cost: 35673.6,            update: -0.0670241   0.617616  -0.907497                estimated parmas: 2.04432,-0.0792484,2.14465
total cost: 2195.01,            update: -0.522767   1.19192 -0.756452           estimated parmas: 1.52155,1.11267,1.3882
total cost: 174.853,            update: -0.537502  0.909933 -0.386395           estimated parmas: 0.984045,2.0226,1.00181
total cost: 102.78,             update: -0.0919666   0.147331 -0.0573675                estimated parmas: 0.892079,2.16994,0.944438
total cost: 101.937,            update: -0.00117081  0.00196749 -0.00081055             estimated parmas: 0.890908,2.1719,0.943628
total cost: 101.937,            update:   3.4312e-06 -4.28555e-06  1.08348e-06          estimated parmas: 0.890912,2.1719,0.943629
total cost: 101.937,            update: -2.01204e-08  2.68928e-08 -7.86602e-09          estimated parmas: 0.890912,2.1719,0.943629
cost: 101.937 >= last cost: 101.937
time used: 0.00635663 seconds. 
estimated params: 0.890912, 2.1719, 0.943629

三、用ceres库实现非线性优化

代码

#include <ceres/ceres.h>#include <chrono>
#include <iostream>
#include <opencv2/core/core.hpp>using namespace std;// 代价函数的计算模型
struct CURVE_FITTING_COST {CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) {}// 残差的计算template <typename T>bool operator()(const T* const abc, T* residual) const {// y-exp(ax^2+bx+c)residual[0] =T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2]);return true;}const double _x, _y;  // x,y数据
};int main(int argc, char** argv) {double ar = 1.0, br = 2.0, cr = 1.0;   // 真实参数值double ae = 2.0, be = -1.0, ce = 5.0;  // 估计参数值int N = 100;double w_sigma = 1.0;              // 噪声sigma值double inv_sigma = 1.0 / w_sigma;  // 噪声的倒数cv::RNG rng;                       // Opencv随机数生成器vector<double> x_data, y_data;  // 数据for (int i = 0; i < N; i++) {double x = i / 100.0;x_data.push_back(x);y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma));}double abc[3] = {ae, be, ce};// 构建最小二乘问题ceres::Problem problem;for (int i = 0; i < N; i++) {// 使用自动推导,模板参数:误差类型、输出维度、输入维度,维数要与前面struct一致problem.AddResidualBlock(new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3>(new CURVE_FITTING_COST(x_data[i], y_data[i])),nullptr, abc);}// 配置求解器ceres::Solver::Options options;// 增量方程如何求解options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY;options.minimizer_progress_to_stdout = true;ceres::Solver::Summary summary;chrono::steady_clock::time_point t1 = chrono::steady_clock::now();ceres::Solve(options, &problem, &summary);  // 开始优化chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used =chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "solve time cost = " << time_used.count() << " seconds." << endl;// 输出结果表cout << summary.BriefReport() << endl;cout << "estimated a, b, c = ";for (auto a : abc) cout << a << " ";cout << endl;return 0;
}

执行结果:

iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time0  1.597873e+06    0.00e+00    3.52e+06   0.00e+00   0.00e+00  1.00e+04        0    4.80e-04    1.00e-031  1.884440e+05    1.41e+06    4.86e+05   9.88e-01   8.82e-01  1.81e+04        1    8.84e-04    1.91e-032  1.784821e+04    1.71e+05    6.78e+04   9.89e-01   9.06e-01  3.87e+04        1    4.86e-04    2.40e-033  1.099631e+03    1.67e+04    8.58e+03   1.10e+00   9.41e-01  1.16e+05        1    5.10e-04    2.92e-034  8.784938e+01    1.01e+03    6.53e+02   1.51e+00   9.67e-01  3.48e+05        1    4.62e-04    3.38e-035  5.141230e+01    3.64e+01    2.72e+01   1.13e+00   9.90e-01  1.05e+06        1    4.67e-04    3.85e-036  5.096862e+01    4.44e-01    4.27e-01   1.89e-01   9.98e-01  3.14e+06        1    4.63e-04    4.32e-037  5.096851e+01    1.10e-04    9.53e-04   2.84e-03   9.99e-01  9.41e+06        1    4.62e-04    4.78e-03
solve time cost = 0.00486601 seconds.
Ceres Solver Report: Iterations: 8, Initial cost: 1.597873e+06, Final cost: 5.096851e+01, Termination: CONVERGENCE
estimated a, b, c = 0.890908 2.1719 0.943628 
http://www.dtcms.com/a/494349.html

相关文章:

  • 仓库管理系统:定义、需求和​​类型
  • 项目管理进阶——解读 软件质量体系白皮书【附全文阅读】
  • ARQC生成模拟
  • 网站架构演变过程ui和网页设计
  • ASR+LLM:B站学习视屏下载并生成学习笔记
  • C++中的引用
  • Linux 系统下 ZONE 区域的划分
  • 网站内部链接优化方法cpanel伪静态wordpress
  • LangChain 表达式语言核心组合:Prompt + LLM + OutputParser
  • 【管理多版本Python环境】Anaconda安装及使用
  • AI修图革命:IOPaint+cpolar让废片拯救触手可及
  • 读书笔记整理--网络学习与概念整合
  • 老铁推荐个2021网站好吗wordpress 入口文件
  • 前端自动化部署全流程(Jenkins + Nginx)
  • 音视频处理(一):什么决定了你的音色?声音的三要素
  • python+uniapp基于微信小程序的助眠小程序
  • ELK运维之路(Filebeat第二章-7.17.24)
  • (未成功)Chrome调试避免跳入第三方源码(设置Blackbox Scripts、将目录添加到忽略列表、向忽略列表添加脚本)
  • 网站建设毕业答辩问题学建设网站首页
  • 大模型在企业云计算领域的核心应用能力要求
  • CloudDM:一站式数据库开发管理工具
  • 适合用struts2做的网站批量发布网站
  • Azure OpenAI 错误码处理完整指南
  • NuxtJS从0到1开发SSR项目-添加Nuxt UI
  • 如何检查本地是否存在 Docker 镜像 ?
  • 查询工程建设项目的网站泉州网站制作平台
  • 单序列和双序列问题——动态规划
  • 【建模与仿真】基于TPE-SVM的乳腺癌诊断可解释人工智能方法
  • 2.5、物联网设备的“免疫系统”:深入解析安全启动与可信执行环境
  • 【小白笔记】理解 PyTorch 和 NumPy 中的张量(Tensor)形状变化unsqueeze(0)