当前位置: 首页 > news >正文

目标速度估计中MLE和CRLB运用(二)

       目标速度v与回波多普勒频率\Delta f呈正相关,而回波多普勒频率\Delta f实际是接收回波频率F与发射频率{F_0}的差值,即\Delta f = F - {F_0}。由于雷达发射频率{F_0}是已知的,因此对接收回波频率F的估计性能即等效于对多普勒频率\Delta f的估计性能。

       考虑在加性高斯白噪声w\left[ n \right]条件下,以采样率f_s对用正弦信号探测的雷达信号进行采样,可知雷达回波信号可表示为:

\begin{array}{l} x\left[ n \right] = s\left[ n \right] + w\left[ n \right]\\ {\rm{ }} = A\exp \left[ {j\left( {2\pi Fn + \phi } \right)} \right] + w\left[ n \right] \end{array}

(1)

若对该回波信号的观测值为{\bf{x}} = \left\{ {​{x_1},{x_2}, \cdots ,{x_n}} \right\},可知观测值{\bf{x}}的概率密度函数为:

p\left( {​{\bf{x}}/A,\phi ,F} \right) = \frac{1}{​{​{​{\left( {\pi \sigma _w^2} \right)}^N}}}\exp \left[ { - \frac{1}{​{\sigma _w^2}}\sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right] - A\exp \left[ {j\left( {2\pi Fn + \phi } \right)} \right]} \right|}^2}} } \right]

(2)

根据《https://blog.csdn.net/m0_37751247/article/details/150957272?spm=1001.2014.3001.5501》的内容可知,关于A,\phi ,F三个参数的最大似然函数可表示为:

l\left( {A,\phi ,F/{\bf{x}}} \right) = \frac{1}{​{​{​{\left( {\pi \sigma _w^2} \right)}^N}}}\exp \left[ { - \frac{1}{​{\sigma _w^2}}\sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right] - A\exp \left[ {j\left( {2\pi Fn + \phi } \right)} \right]} \right|}^2}} } \right]

(3)

由于是对频率F的估计,因此为了方便计算可对式(3)中的A,\phi两个参数进行合并,即令\tilde A = A\exp \left( {j\phi } \right) = A\cos \phi + jA\sin \phi = {\tilde A_R} + j{\tilde A_I},则公式(3)可写成:

l\left( {\tilde A,F/{\bf{x}}} \right) = \frac{1}{​{​{​{\left( {\pi \sigma _w^2} \right)}^N}}}\exp \left[ { - \frac{1}{​{\sigma _w^2}}\sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right] - \tilde A\exp \left( {j2\pi Fn} \right)} \right|}^2}} } \right]

(4)

     通过公式(4)可以看出,若想最大似然函数l\left( {\tilde A,F/{\bf{x}}} \right)取得最大值,则g\left( {\tilde A,F/{\bf{x}}} \right) = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right] - \tilde A\exp \left( {j2\pi Fn} \right)} \right|}^2}}即要取得最小值,即:

\mathop {\arg \max }\limits_{\tilde A,F} l\left( {\tilde A,F/{\bf{x}}} \right) = \mathop {\arg \min }\limits_{\tilde A,F} g\left( {\tilde A,F/{\bf{x}}} \right)

(5)

       在这里目标是求对频率F的最大似然估计(MLE)\hat F,先对参数\tilde A进行最大似然估计(MLE)。让g\left( {\tilde A,F/{\bf{x}}} \right)分别对{\tilde A_R}{\tilde A_I}求偏导,对{\tilde A_R}求偏导可得:

\begin{array}{l} \frac{​{\partial g}}{​{\partial {​{\tilde A}_R}}}\\ = \sum\limits_{n = 0}^{N - 1} {\frac{\partial }{​{\partial {​{\tilde A}_R}}}} \left\{ \begin{array}{l} \left[ {x\left[ n \right] - \left( {​{​{\tilde A}_R} + j{​{\tilde A}_I}} \right)\exp \left( {j2\pi Fn} \right)} \right] \cdot \\ \left[ {​{x^*}\left[ n \right] - \left( {​{​{\tilde A}_R} - j{​{\tilde A}_I}} \right)\exp \left( { - j2\pi Fn} \right)} \right] \end{array} \right\}\\ = \sum\limits_{n = 0}^{N - 1} {\left\{ \begin{array}{l} \left[ {x\left[ n \right] - \left( {​{​{\tilde A}_R} + j{​{\tilde A}_I}} \right)\exp \left( {j2\pi Fn} \right)} \right] \cdot \left[ { - \exp \left( { - j2\pi Fn} \right)} \right] + \\ \left[ { - \exp \left( {j2\pi Fn} \right)} \right] \cdot \left[ {​{x^*}\left[ n \right] - \left( {​{​{\tilde A}_R} - j{​{\tilde A}_I}} \right)\exp \left( { - j2\pi Fn} \right)} \right] \end{array} \right\}} \end{array}

(6)

令公式(6)等于0,则有\frac{​{\partial g}}{​{\partial {​{\tilde A}_R}}} = 0、必然有{\mathop{\rm Re}\nolimits} \left\{ {\frac{​{\partial g}}{​{\partial {​{\tilde A}_R}}}} \right\} = 0,即:

\begin{array}{l} {\mathop{\rm Re}\nolimits} \left\{ {\frac{​{\partial g}}{​{\partial {​{\tilde A}_R}}}} \right\}\\ = {\mathop{\rm Re}\nolimits} \sum\limits_{n = 0}^{N - 1} {\left\{ \begin{array}{l} \left[ {x\left[ n \right] - \left( {​{​{\tilde A}_R} + j{​{\tilde A}_I}} \right)\exp \left( {j2\pi Fn} \right)} \right] \cdot \left[ { - \exp \left( { - j2\pi Fn} \right)} \right] + \\ \left[ { - \exp \left( {j2\pi Fn} \right)} \right] \cdot \left[ {​{x^*}\left[ n \right] - \left( {​{​{\tilde A}_R} - j{​{\tilde A}_I}} \right)\exp \left( { - j2\pi Fn} \right)} \right] \end{array} \right\}} \\ = \sum\limits_{n = 0}^{N - 1} {\left\{ {\left[ {​{\mathop{\rm Re}\nolimits} \left\{ { - x\left[ n \right]\exp \left( { - j2\pi Fn} \right)} \right\} + {​{\tilde A}_R}} \right] + \left[ {​{\mathop{\rm Re}\nolimits} \left\{ { - x\left[ n \right]\exp \left( {j2\pi Fn} \right)} \right\} + {​{\tilde A}_R}} \right]} \right\}} \\ = 2\sum\limits_{n = 0}^{N - 1} {\left\{ {\left[ { - {\mathop{\rm Re}\nolimits} \left\{ {x\left[ n \right]\exp \left( { - j2\pi Fn} \right)} \right\} + {​{\tilde A}_R}} \right]} \right\}} = 0\\ \Rightarrow {​{\hat \tilde A}_R} = \frac{1}{N}{\mathop{\rm Re}\nolimits} \left\{ {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]\exp \left( { - j2\pi Fn} \right)} } \right\} \end{array}

(7)

       同理,让g\left( {\tilde A,F/{\bf{x}}} \right){\tilde A_I}求偏导并令导数等于0可得:

{\hat \tilde A_I} = \frac{1}{N}{\mathop{\rm Im}\nolimits} \left\{ {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]\exp \left( { - j2\pi Fn} \right)} } \right\}

(8)

所以根据\tilde A = {\tilde A_R} + j{\tilde A_I}可知:

\hat \tilde A = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]\exp \left( { - j2\pi Fn} \right)}

(9)

       观察公式(9)可知,若F已知,则\tilde A的最大似然估计(MLE)就是观测值{\bf{x}}的离散傅里叶变换在F处的值。

       进而对频率F进行最大似然估计(MLE),同样对于g\left( {\tilde A,F/{\bf{x}}} \right)有:

\begin{array}{l} g\left( {\tilde A,F/{\bf{x}}} \right)\\ = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right] - \tilde A\exp \left( {j2\pi Fn} \right)} \right|}^2}} \\ = \sum\limits_{n = 0}^{N - 1} {\left[ {x\left[ n \right] - \tilde A\exp \left( {j2\pi Fn} \right)} \right]\left[ {​{x^*}\left[ n \right] - {​{\tilde A}^*}\exp \left( { - j2\pi Fn} \right)} \right]} \\ = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right]} \right|}^2}} - {​{\tilde A}^*}\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)\\ {\rm{ }} - \tilde A\sum\limits_{n = 0}^{N - 1} {​{x^*}\left[ n \right]} \exp \left( {j2\pi Fn} \right) + \sum\limits_{n = 0}^{N - 1} {​{​{\left| {\tilde A} \right|}^2}} \\ = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right]} \right|}^2}} - 2{\mathop{\rm Re}\nolimits} \left\{ {​{​{\tilde A}^*}\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right\} + \sum\limits_{n = 0}^{N - 1} {​{​{\left| {\tilde A} \right|}^2}} \end{array}

(10)

       将公式(9)代入公式(10)中可得:

\begin{array}{l} g\left( {\tilde A,F/{\bf{x}}} \right)\\ = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right]} \right|}^2}} - 2{\mathop{\rm Re}\nolimits} \left\{ {​{​{\tilde A}^*}\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right\} + \sum\limits_{n = 0}^{N - 1} {​{​{\left| {\tilde A} \right|}^2}} \\ = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right]} \right|}^2}} \\ {\rm{ }} - 2{\mathop{\rm Re}\nolimits} \left\{ {\frac{1}{N}{​{\left\{ {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right\}}^*} \cdot \left\{ {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right\}} \right\}\\ {\rm{ }} + {\sum\limits_{n = 0}^{N - 1} {\left| {\frac{1}{N}\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right|} ^2}\\ = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right]} \right|}^2}} - 2 \cdot \frac{1}{N}{\left| {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right|^2} + \frac{1}{N}{\left| {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right|^2}\\ = \sum\limits_{n = 0}^{N - 1} {​{​{\left| {x\left[ n \right]} \right|}^2}} - \frac{1}{N}{\left| {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right|^2} \end{array}

(11)

从公式(9)可以看出:

\mathop {\arg \min }\limits_{\tilde A,F} g\left( {\tilde A,F/{\bf{x}}} \right) = \mathop {\arg \max }\limits_F \frac{1}{N}{\left| {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]} \exp \left( { - j2\pi Fn} \right)} \right|^2}

(12)

       即取x\left[ n \right]离散傅里叶变换的最大值的位置即是接收频率的最大似然估计(MLE)\hat{F}

http://www.dtcms.com/a/403546.html

相关文章:

  • 沈阳网站建设找思路做区位分析的地图网站
  • 莱芜做网站建设的公司seo交流qq群
  • MongoDB Ops Manager部署
  • DecDEC论文精读:动态误差补偿的低比特LLM推理优化方案
  • 面试复习题--Android的前沿技术
  • 江苏省建设职业中心网站工程招标信息在哪看
  • Go语言环境安装
  • AI-调查研究-86-交感神经 副交感神经 自主神经系统的平衡之道:交感与副交感的利弊解析
  • 重构华尔街交易室:基于大模型的多智能体协作交易系统TradingAgents深度技术解析
  • 每天五分钟深度学习:基于训练集、验证集、测试集迭代模型
  • arXiv 2025 | 多尺度线性注意的混合CNN-Transformer医学分割网络,即插即用,涨点起飞!
  • 青岛北京网站建设公司wordpress 即时联系
  • SpringBoot结合PostGIS在省级旅游口号管理中的应用实践
  • RedisFront:一款免费开源的跨平台Redis客户端工具
  • 数据中心网络架构的“南北向”和“东西向”
  • 法律网站的建设流程免费模板素材软件
  • 支持17种方言10种外语!阿里最新AI语音合成模型Qwen3-TTS-Flash震撼发布
  • Apache Doris性能优化全解析:慢查询定位与引擎深度调优
  • 境外电商网站建设崇州网站建站
  • 可学习性(Learnability)条件:什么样的学习问题是有解的?
  • 动态规划算法初识--斐波那契数列模型
  • Linux网络:使用UDP实现网络通信(网络套接字的创建绑定)
  • 第一次培训
  • 端侧多模态大模型MiniCPM-V 4.5技术报告解析
  • 【环境配置】macbook 配置环境变量
  • 位运算解题1:找数组中唯一成对的那个数
  • 织梦网做网站洛阳网站制作哪家好
  • 动态ip建设网站深圳英文网站建设去哪家
  • 【香橙派开发笔记】初次使用与ubuntu系统安装
  • SAP GUI Script简单案例