当前位置: 首页 > news >正文

深度学习(九):逻辑回归

逻辑回归(Logistic Regression)是机器学习与深度学习中最经典、最基础的模型之一。虽然名字里带有“回归”,但它实际上是一个用于分类问题的线性模型,通常用于二分类任务。

基本概念

逻辑回归是一种广义线性模型(GLM),它通过对输入特征进行线性组合,然后使用逻辑函数(sigmoid)将结果映射到 [0,1] 区间,输出可以看作是样本属于某一类别的概率。

  • 输入:样本特征向量 x∈Rn

  • 参数:权重向量 w、偏置项 b

  • 线性变换

    在这里插入图片描述

  • 非线性映射(sigmoid):

    在这里插入图片描述

  • 输出:y^∈(0,1),代表样本属于正类(y=1)的概率。

因此,逻辑回归的决策边界由线性函数决定,而概率估计则通过 sigmoid 完成。

逻辑回归的数学推导

概率建模

在二分类问题中,设样本的真实标签 y∈{0,1},预测概率为:

在这里插入图片描述

即模型对样本属于正类/负类的概率进行建模。

损失函数

逻辑回归采用极大似然估计(MLE)来求解参数。假设训练集有 m 个样本:

在这里插入图片描述

取对数似然函数:

在这里插入图片描述

为了最小化损失,通常定义负对数似然作为损失函数:

在这里插入图片描述

这就是著名的 交叉熵损失(Cross Entropy Loss)

梯度下降更新

对参数求梯度:

在这里插入图片描述

采用梯度下降法更新参数:

在这里插入图片描述

其中 η 是学习率。

逻辑回归与深度学习的关系

单层神经网络

  • 逻辑回归可以看作是一个只有输入层和输出层的神经网络:
    • 输入层:特征向量 x
    • 权重:w
    • 激活函数:sigmoid
  • 本质上,逻辑回归 = 感知机 + 概率解释。

损失函数联系

  • 逻辑回归的交叉熵损失是深度学习分类模型的标准选择。
  • 在多分类问题中,逻辑回归自然扩展为 softmax 回归(Softmax Regression),其损失函数就是 softmax + cross entropy。

优化方式

  • 逻辑回归参数求解过程使用梯度下降,与神经网络训练一致。
  • 可以使用 SGD、Adam 等优化器来加速收敛。

基础性地位

  • 逻辑回归是深度学习的入口模型,帮助理解神经网络的前向传播、反向传播和损失函数。
  • 在 NLP(如词向量 + LR)、CV(如特征提取 + LR)等场景中,逻辑回归常作为基准模型。

逻辑回归的应用场景

二分类任务

  • 垃圾邮件识别(spam vs. not spam)
  • 广告点击预测(点击 vs. 不点击)
  • 医疗诊断(二分类疾病预测)

作为大模型的最后一层

  • 在深度神经网络、卷积网络、Transformer 中,最后一层往往是一个逻辑回归(或 softmax 回归),将隐藏特征映射为概率输出。

线性可分数据

  • 逻辑回归天然适用于线性可分或近似线性可分的数据集。

逻辑回归的改进与扩展

在这里插入图片描述

正则化

  • 为防止过拟合,逻辑回归常加入正则化项:

  • L1 正则还能实现特征选择(稀疏化)。

多分类扩展

  • 使用 softmax 回归(多项逻辑回归)实现多分类。

核逻辑回归

  • 引入核函数,将输入映射到高维空间,增强非线性建模能力。

与深度学习结合

  • 在神经网络中,逻辑回归层常作为输出层。
  • 对抗学习(GAN)、序列建模中,逻辑回归思想用于判别器。

实践中的逻辑回归

训练流程

  1. 数据预处理(归一化、标准化、特征选择)
  2. 参数初始化(通常为零或小随机数)
  3. 前向计算(线性 + sigmoid)
  4. 计算损失(交叉熵)
  5. 反向传播(梯度计算)
  6. 参数更新(SGD/Adam 等优化器)
  7. 模型评估(准确率、AUC、F1)

超参数调节

  • 学习率:影响收敛速度和稳定性;
  • 正则化系数:平衡拟合能力和泛化性能;
  • 特征处理:对性能影响远大于参数本身。

与深度学习框架结合

在 TensorFlow、PyTorch 中,逻辑回归的实现通常只需一层线性层 + sigmoid 激活,再加上 BCE(Binary Cross Entropy)损失即可。


文章转载自:

http://ePAGXYXQ.mcbqq.cn
http://y8k0E3ok.mcbqq.cn
http://ulduGTgM.mcbqq.cn
http://gWzH2h0k.mcbqq.cn
http://GUDUXM3e.mcbqq.cn
http://dFmVYIzM.mcbqq.cn
http://8piGlcqU.mcbqq.cn
http://QonKkNm8.mcbqq.cn
http://aJjibCwA.mcbqq.cn
http://fhamwwnu.mcbqq.cn
http://HnFAsyKN.mcbqq.cn
http://xG8gwlPn.mcbqq.cn
http://Cm40OBur.mcbqq.cn
http://Ea7xNudg.mcbqq.cn
http://ghPsop6w.mcbqq.cn
http://ZBxBDS9R.mcbqq.cn
http://a3neGrzZ.mcbqq.cn
http://0VeSfuxN.mcbqq.cn
http://3EJ7cGDr.mcbqq.cn
http://sL6KVFjp.mcbqq.cn
http://55Chusyu.mcbqq.cn
http://RTiBNFJy.mcbqq.cn
http://LO64AIfA.mcbqq.cn
http://Dc0yALGz.mcbqq.cn
http://Mb588beJ.mcbqq.cn
http://Br9qEvn9.mcbqq.cn
http://leWhheMl.mcbqq.cn
http://ZBPJw4Sb.mcbqq.cn
http://YDZsOQeg.mcbqq.cn
http://e7WD9Ayq.mcbqq.cn
http://www.dtcms.com/a/383643.html

相关文章:

  • 【LeetCode 每日一题】36. 有效的数独
  • 单表查询要点概述
  • 【Trans2025】计算机视觉|即插即用|WSC:即插即用!WSC模块,高光谱图像分类新SOTA!
  • Java面试小册(3)
  • 微服务项目测试接口一次成功一次失败解决办法
  • GPIO 之 EMIO 按键控制 LED 实验
  • centos安装 GNOME 桌面环境
  • 高并发投票功能设计
  • (B2B/工业/医疗行业)GEO优化服务商有哪些?哪家好?供应商推荐
  • unordered_map使用MFC的CString作为键值遇到C2056和C2064错误
  • MFC_Install_Create
  • 大数据知识框架思维导图(构造知识学习框架)
  • Spring Boot 集成第三方 API 时,常见的超时与重试机制设计
  • 设计模式——创建型模式
  • Nginx_Tomcat综合案例
  • Java常见类类型与区别详解:从实体类到异常类的全面指南
  • MOS管驱动栅极出现振铃现象
  • camke中采用vcpkg工具链设置OSG时
  • 玩转ElasticSearch
  • 设计模式-模板模式详解
  • GDB调试技巧实战--揪出内存泄漏元凶
  • LLM基础-工程化
  • Ubuntu系统下交叉编译Android的Lame库
  • AI 重构医疗:辅助诊断、药物研发、健康管理的三大落地场景实践
  • MySQL的日志系统(redolog、binlog、WAL技术)
  • 贪心算法应用:半导体晶圆生产问题详解
  • 按键精灵解决重复性点击
  • 索引-分类
  • webrtc弱网-IntervalBudget类源码分析与算法原理
  • 第20课:数据治理与合规