当前位置: 首页 > news >正文

贪心算法应用:推荐冷启动问题详解

在这里插入图片描述

Java中的贪心算法应用:推荐冷启动问题详解

一、推荐冷启动问题概述

1.1 什么是推荐冷启动

推荐冷启动问题是指在推荐系统初期或面对新用户/新物品时,由于缺乏足够的历史行为数据,导致推荐系统难以做出准确推荐的情况。冷启动问题主要分为三类:

  • 用户冷启动:新用户加入系统,没有历史行为数据
  • 物品冷启动:新物品加入系统,没有被用户交互过
  • 系统冷启动:全新推荐系统,没有任何历史数据

1.2 冷启动问题的挑战

  • 数据稀疏性:缺乏足够的用户-物品交互数据
  • 特征缺失:难以提取有效的用户或物品特征
  • 推荐质量:初期推荐往往不够精准
  • 用户体验:可能导致用户流失

二、贪心算法基础

2.1 贪心算法原理

贪心算法(Greedy Algorithm)是一种在每一步选择中都采取当前状态下最优(或最有利)的选择,从而希望导致结果是全局最优的算法策略。

贪心算法的基本特征:

  • 局部最优选择:每一步都做出在当前看来最好的选择
  • 无后效性:做出的选择不会影响后续步骤的决策
  • 不可回溯:一旦做出选择就不能更改

2.2 贪心算法的适用条件

贪心算法适用于满足以下两个条件的问题:

  1. 贪心选择性质:局部最优解能导致全局最优解
  2. 最优子结构:问题的最优解包含其子问题的最优解

2.3 贪心算法在推荐系统中的优势

  • 计算效率高:适合实时推荐场景
  • 实现简单:算法逻辑清晰,易于实现
  • 可解释性强:推荐理由明确
  • 对新用户友好:不依赖历史数据

三、贪心算法解决冷启动问题的策略

3.1 基于流行度的贪心推荐

public class PopularityBasedRecommender {private Map<Item, Integer> itemPopularity;public PopularityBasedRecommender(List<Interaction> interactions) {this.itemPopularity = new HashMap<>();// 统计物品流行度for (Interaction interaction : interactions) {Item item = interaction.getItem();itemPopularity.put(item, itemPopularity.getOrDefault(item, 0) + 1);}}public List<Item> recommendForNewUser(int topN) {// 按流行度排序List<Item> sortedItems = new ArrayList<>(itemPopularity.keySet());sortedItems.sort((a, b) -> itemPopularity.get(b) - itemPopularity.get(a));// 返回前topN个最流行的物品return sortedItems.subList(0, Math.min(topN, sortedItems.size()));}
}

3.2 基于内容的贪心推荐

public class ContentBasedRecommender {private List<Item> items;private Map<String, Double> defaultUserProfile;public ContentBasedRecommender(List<Item> items, Map<String, Double> defaultUserProfile) {this.items = items;this.defaultUserProfile = defaultUserProfile;}public List<Item> recommendForNewUser(int topN) {// 计算物品与默认用户画像的相似度Map<Item, Double> itemScores = new HashMap<>();for (Item item : items) {double similarity = cosineSimilarity(item.getFeatures(), defaultUserProfile);itemScores.put(item, similarity);}// 按相似度排序List<Item> sortedItems = new ArrayList<>(itemScores.keySet());sortedItems.sort((a, b) -> Double.compare(itemScores.get(b), itemScores.get(a)));return sortedItems.subList(0, Math.min(topN, sortedItems.size()));}private double cosineSimilarity(Map<String, Double> itemFeatures, Map<String, Double> userProfile) {// 计算余弦相似度的实现double dotProduct = 0.0;double normA = 0.0;double normB = 0.0;for (String feature : userProfile.keySet()) {if (itemFeatures.containsKey(feature)) {dotProduct += userProfile.get(feature) * itemFeatures.get(feature);normA += Math.pow(userProfile.get(feature), 2);normB += Math.pow(itemFeatures.get(feature), 2);}}return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB) + 1e-10);}
}

3.3 基于多样性的贪心推荐

public class DiversityBasedRecommender {private List<Item> items;private int featureSize;public DiversityBasedRecommender(List<Item> items, int featureSize) {this.items = items;this.featureSize = featureSize;}public List<Item> recommendForNewUser(int topN) {List<Item> recommendedItems = new ArrayList<>();Set<Integer> selectedFeatures = new HashSet<>();// 贪心地选择覆盖最多新特征的物品while (recommendedItems.size() < topN && !items.isEmpty()) {Item bestItem = null;int maxNewFeatures = -1;for (Item item : items) {int newFeatures = countNewFeatures(item, selectedFeatures);if (newFeatures > maxNewFeatures) {maxNewFeatures = newFeatures;bestItem = item;}}if (bestItem != null) {recommendedItems.add(bestItem);items.remove(bestItem);selectedFeatures.addAll(bestItem.getFeatureIds());} else {break; // 没有更多特征可以添加}}return recommendedItems;}private int countNewFeatures(Item item, Set<Integer> selectedFeatures) {int count = 0;for (int featureId : item.getFeatureIds()) {if (!selectedFeatures.contains(featureId)) {count++;}}return count;}
}

四、贪心算法在冷启动中的高级应用

4.1 多目标贪心推荐

public class MultiObjectiveRecommender {private List<Item> items;private double[] weights; // 各目标的权重public MultiObjectiveRecommender(List<Item> items, double[] weights) {this.items = items;this.weights = weights;}public List<Item> recommendForNewUser(int topN) {List<Item> recommendedItems = new ArrayList<>();Set<Integer> selectedFeatures = new HashSet<>();while (recommendedItems.size() < topN && !items.isEmpty()) {Item bestItem = null;double maxScore = -Double.MAX_VALUE;for (Item item : items) {double score = calculateMultiObjectiveScore(item, selectedFeatures);if (score > maxScore) {maxScore = score;bestItem = item;}}if (bestItem != null) {recommendedItems.add(bestItem);items.remove(bestItem);selectedFeatures.addAll(bestItem.getFeatureIds());} else {break;}}return recommendedItems;}private double calculateMultiObjectiveScore(Item item, Set<Integer> selectedFeatures) {double popularityScore = item.getPopularity();double diversityScore = countNewFeatures(item, selectedFeatures) / (double) featureSize;double contentScore = item.getDefaultRelevance();return weights[0] * popularityScore + weights[1] * diversityScore + weights[2] * contentScore;}
}

4.2 贪心算法与探索-利用平衡

public class ExplorationExploitationRecommender {private List<Item> items;private Map<Item, Double> itemScores;private double explorationRate;public ExplorationExploitationRecommender(List<Item> items, Map<Item, Double> itemScores,double explorationRate) {this.items = new ArrayList<>(items);this.itemScores = new HashMap<>(itemScores);this.explorationRate = explorationRate;}public List<Item> recommendForNewUser(int topN) {List<Item> recommendedItems = new ArrayList<>();Random random = new Random();while (recommendedItems.size() < topN && !items.isEmpty()) {// 决定是探索还是利用if (random.nextDouble() < explorationRate) {// 探索:随机选择一个物品int randomIndex = random.nextInt(items.size());Item randomItem = items.get(randomIndex);recommendedItems.add(randomItem);items.remove(randomIndex);} else {// 利用:选择得分最高的物品Item bestItem = Collections.max(itemScores.entrySet(), Comparator.comparingDouble(Map.Entry::getValue)).getKey();recommendedItems.add(bestItem);items.remove(bestItem);itemScores.remove(bestItem);}}return recommendedItems;}
}

4.3 贪心算法与Bandit算法结合

public class BanditRecommender {private List<Item> items;private Map<Item, Double> itemRewards;private Map<Item, Integer> itemAttempts;private double explorationFactor;public BanditRecommender(List<Item> items, double explorationFactor) {this.items = new ArrayList<>(items);this.itemRewards = new HashMap<>();this.itemAttempts = new HashMap<>();this.explorationFactor = explorationFactor;for (Item item : items) {itemRewards.put(item, 0.0);itemAttempts.put(item, 0);}}public Item recommendNextItem() {if (items.isEmpty()) return null;Item selectedItem = null;double maxScore = -Double.MAX_VALUE;for (Item item : items) {int attempts = itemAttempts.get(item);double reward = itemRewards.get(item);double score = calculateUCBScore(reward, attempts);if (score > maxScore) {maxScore = score;selectedItem = item;}}return selectedItem;}public void updateItemFeedback(Item item, double reward) {itemAttempts.put(item, itemAttempts.get(item) + 1);itemRewards.put(item, itemRewards.get(item) + reward);}private double calculateUCBScore(double reward, int attempts) {int totalAttempts = itemAttempts.values().stream().mapToInt(Integer::intValue).sum();if (attempts == 0) return Double.MAX_VALUE;double exploitation = reward / attempts;double exploration = Math.sqrt(Math.log(totalAttempts) / attempts);return exploitation + explorationFactor * exploration;}
}

五、贪心算法实现冷启动推荐的Java完整示例

5.1 数据模型定义

class Item {private String id;private String title;private Map<String, Double> features; // 内容特征private int popularity; // 流行度分数private List<String> categories; // 类别信息// 构造函数、getter和setter方法// ...public double getFeatureValue(String featureName) {return features.getOrDefault(featureName, 0.0);}
}class User {private String id;private Map<String, Double> preferences; // 用户偏好private boolean isNewUser;// 构造函数、getter和setter方法// ...
}class Interaction {private User user;private Item item;private long timestamp;private double rating;// 构造函数、getter和setter方法// ...
}

5.2 冷启动推荐系统实现

public class ColdStartRecommender {private List<Item> itemCatalog;private Map<String, Double> defaultUserProfile;private double popularityWeight;private double diversityWeight;private double relevanceWeight;public ColdStartRecommender(List<Item> itemCatalog, Map<String, Double> defaultUserProfile,double popularityWeight,double diversityWeight,double relevanceWeight) {this.itemCatalog = new ArrayList<>(itemCatalog);this.defaultUserProfile = new HashMap<>(defaultUserProfile);this.popularityWeight = popularityWeight;this.diversityWeight = diversityWeight;this.relevanceWeight = relevanceWeight;}public List<Item> recommendForNewUser(int topN) {// 计算每个物品的综合得分Map<Item, Double> itemScores = new HashMap<>();Set<String> coveredCategories = new HashSet<>();for (Item item : itemCatalog) {double popularityScore = calculatePopularityScore(item);double relevanceScore = calculateRelevanceScore(item);double diversityScore = calculateDiversityScore(item, coveredCategories);double totalScore = popularityWeight * popularityScore +relevanceWeight * relevanceScore +diversityWeight * diversityScore;itemScores.put(item, totalScore);}// 按得分排序并选择前topN个物品return itemScores.entrySet().stream().sorted(Map.Entry.<Item, Double>comparingByValue().reversed()).limit(topN).map(Map.Entry::getKey).collect(Collectors.toList());}private double calculatePopularityScore(Item item) {// 归一化处理int maxPopularity = itemCatalog.stream().mapToInt(Item::getPopularity).max().orElse(1);return (double) item.getPopularity() / maxPopularity;}private double calculateRelevanceScore(Item item) {// 计算物品特征与默认用户画像的余弦相似度double dotProduct = 0.0;double normA = 0.0;double normB = 0.0;for (String feature : defaultUserProfile.keySet()) {double userValue = defaultUserProfile.get(feature);double itemValue = item.getFeatureValue(feature);dotProduct += userValue * itemValue;normA += Math.pow(userValue, 2);normB += Math.pow(itemValue, 2);}return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB) + 1e-10);}private double calculateDiversityScore(Item item, Set<String> coveredCategories) {// 计算该物品能带来的新类别数量long newCategories = item.getCategories().stream().filter(c -> !coveredCategories.contains(c)).count();coveredCategories.addAll(item.getCategories());return (double) newCategories / item.getCategories().size();}// 更新方法,当有新交互时调用public void updateWithInteraction(Interaction interaction) {// 可以在这里实现反馈学习逻辑// 例如更新物品流行度或用户画像}
}

5.3 使用示例

public class RecommenderDemo {public static void main(String[] args) {// 1. 准备数据List<Item> items = prepareItems();Map<String, Double> defaultProfile = prepareDefaultProfile();// 2. 创建推荐器ColdStartRecommender recommender = new ColdStartRecommender(items, defaultProfile, 0.4, 0.3, 0.3);// 3. 为新用户生成推荐List<Item> recommendations = recommender.recommendForNewUser(10);// 4. 输出推荐结果System.out.println("Top 10 Recommendations for New User:");recommendations.forEach(item -> System.out.println(item.getTitle() + " (Score: " + String.format("%.2f", calculateItemScore(recommender, item)) + ")"));}private static List<Item> prepareItems() {// 实际应用中从数据库或文件加载List<Item> items = new ArrayList<>();// 添加示例物品items.add(new Item("1", "The Shawshank Redemption", Map.of("drama", 0.9, "crime", 0.8), 1000, List.of("Drama", "Crime")));items.add(new Item("2", "The Godfather", Map.of("drama", 0.95, "crime", 0.9), 950, List.of("Drama", "Crime")));items.add(new Item("3", "Inception", Map.of("sci-fi", 0.85, "action", 0.75), 800, List.of("Sci-Fi", "Action")));// 添加更多物品...return items;}private static Map<String, Double> prepareDefaultProfile() {// 默认用户画像,可以基于人口统计或领域知识return Map.of("drama", 0.7,"crime", 0.6,"sci-fi", 0.5,"action", 0.4);}private static double calculateItemScore(ColdStartRecommender recommender, Item item) {// 这里简化计算,实际应用中应该通过推荐器的方法获取return 0.4 * (item.getPopularity() / 1000.0) +0.3 * recommender.calculateRelevanceScore(item) +0.3 * (item.getCategories().size() / 2.0);}
}

六、性能优化与工程实践

6.1 数据结构优化

public class OptimizedRecommender {private PriorityQueue<ScoredItem> itemQueue;private Map<String, Double> featureWeights;private int maxItems;public OptimizedRecommender(List<Item> items, Map<String, Double> featureWeights, int maxItems) {this.featureWeights = featureWeights;this.maxItems = maxItems;// 使用优先队列优化TopN查询this.itemQueue = new PriorityQueue<>(Comparator.comparingDouble(ScoredItem::getScore));// 预计算物品得分for (Item item : items) {double score = calculateScore(item);itemQueue.offer(new ScoredItem(item, score));// 保持队列大小不超过maxItemsif (itemQueue.size() > maxItems) {itemQueue.poll(); // 移除得分最低的}}}public List<Item> getTopRecommendations() {List<Item> results = new ArrayList<>();while (!itemQueue.isEmpty()) {results.add(itemQueue.poll().getItem());}Collections.reverse(results); // 从高到低排序return results;}private double calculateScore(Item item) {double score = 0.0;for (Map.Entry<String, Double> entry : featureWeights.entrySet()) {String feature = entry.getKey();double weight = entry.getValue();score += weight * item.getFeatureValue(feature);}return score;}private static class ScoredItem {private Item item;private double score;public ScoredItem(Item item, double score) {this.item = item;this.score = score;}public Item getItem() { return item; }public double getScore() { return score; }}
}

6.2 并行计算优化

public class ParallelRecommender {private List<Item> items;private int threadPoolSize;public ParallelRecommender(List<Item> items, int threadPoolSize) {this.items = items;this.threadPoolSize = threadPoolSize;}public List<Item> recommendInParallel(int topN) {ExecutorService executor = Executors.newFixedThreadPool(threadPoolSize);List<Future<ScoredItem>> futures = new ArrayList<>();// 并行计算每个物品的得分for (Item item : items) {Callable<ScoredItem> task = () -> {double score = calculateItemScore(item);return new ScoredItem(item, score);};futures.add(executor.submit(task));}// 收集结果PriorityQueue<ScoredItem> queue = new PriorityQueue<>(Comparator.comparingDouble(ScoredItem::getScore));for (Future<ScoredItem> future : futures) {try {ScoredItem scoredItem = future.get();queue.offer(scoredItem);if (queue.size() > topN) {queue.poll();}} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}}executor.shutdown();// 返回排序后的结果List<Item> results = new ArrayList<>();while (!queue.isEmpty()) {results.add(queue.poll().getItem());}Collections.reverse(results);return results;}private double calculateItemScore(Item item) {// 复杂的得分计算逻辑// ...return 0.0;}
}

6.3 缓存策略

public class CachedRecommender {private List<Item> items;private LoadingCache<String, List<Item>> recommendationCache;public CachedRecommender(List<Item> items) {this.items = items;// 使用Guava构建缓存this.recommendationCache = CacheBuilder.newBuilder().maximumSize(100) // 最大缓存数量.expireAfterWrite(1, TimeUnit.HOURS) // 1小时后过期.build(new CacheLoader<String, List<Item>>() {@Overridepublic List<Item> load(String key) throws Exception {return computeRecommendations(key);}});}public List<Item> getRecommendations(String userId) {try {return recommendationCache.get(userId);} catch (ExecutionException e) {// 出错时返回默认推荐return getDefaultRecommendations();}}private List<Item> computeRecommendations(String userId) {// 实际推荐计算逻辑// ...return new ArrayList<>();}private List<Item> getDefaultRecommendations() {// 返回默认推荐列表return items.subList(0, Math.min(10, items.size()));}
}

七、评估与调优

7.1 评估指标实现

public class RecommenderEvaluator {public static double calculatePrecision(List<Item> recommended, List<Item> relevant) {Set<Item> relevantSet = new HashSet<>(relevant);long truePositives = recommended.stream().filter(relevantSet::contains).count();return (double) truePositives / recommended.size();}public static double calculateRecall(List<Item> recommended, List<Item> relevant) {Set<Item> relevantSet = new HashSet<>(relevant);long truePositives = recommended.stream().filter(relevantSet::contains).count();return (double) truePositives / relevant.size();}public static double calculateNDCG(List<Item> recommended, List<Item> relevant) {Set<Item> relevantSet = new HashSet<>(relevant);double dcg = 0.0;double idcg = calculateIDCG(relevant.size());for (int i = 0; i < recommended.size(); i++) {if (relevantSet.contains(recommended.get(i))) {dcg += 1.0 / Math.log(i + 2);}}return dcg / idcg;}private static double calculateIDCG(int n) {double idcg = 0.0;for (int i = 0; i < n; i++) {idcg += 1.0 / Math.log(i + 2);}return idcg;}public static double calculateDiversity(List<Item> recommendations) {Set<String> allCategories = new HashSet<>();for (Item item : recommendations) {allCategories.addAll(item.getCategories());}return (double) allCategories.size() / recommendations.size();}
}

7.2 A/B测试框架

public class ABTestFramework {private List<Recommender> recommenders;private Map<String, Integer> variantAllocation;public ABTestFramework(List<Recommender> recommenders) {this.recommenders = recommenders;this.variantAllocation = new HashMap<>();}public List<Item> getRecommendations(String userId, int topN) {// 确定用户属于哪个测试组int variantIndex = determineVariant(userId);Recommender recommender = recommenders.get(variantIndex);// 获取推荐return recommender.recommendForNewUser(topN);}private int determineVariant(String userId) {// 如果已经分配过,返回之前的分配if (variantAllocation.containsKey(userId)) {return variantAllocation.get(userId);}// 否则随机分配并记录Random random = new Random();int variantIndex = random.nextInt(recommenders.size());variantAllocation.put(userId, variantIndex);return variantIndex;}public void logInteraction(String userId, Item item, double rating) {int variantIndex = variantAllocation.get(userId);// 记录交互数据用于后续分析// ...}public void analyzeResults() {// 分析各推荐算法的表现// ...}
}

八、实际应用中的挑战与解决方案

8.1 冷启动阶段的过渡策略

public class HybridRecommender {private ColdStartRecommender coldStartRecommender;private CollaborativeFilteringRecommender cfRecommender;private int coldStartThreshold;public HybridRecommender(ColdStartRecommender csRecommender,CollaborativeFilteringRecommender cfRecommender,int coldStartThreshold) {this.coldStartRecommender = csRecommender;this.cfRecommender = cfRecommender;this.coldStartThreshold = coldStartThreshold;}public List<Item> recommend(User user, int topN) {if (user.isNewUser() || user.getInteractionCount() < coldStartThreshold) {// 冷启动阶段使用贪心算法return coldStartRecommender.recommendForNewUser(topN);} else {// 有足够数据后切换到协同过滤return cfRecommender.recommend(user, topN);}}// 平滑过渡版本public List<Item> recommendWithTransition(User user, int topN) {double coldStartWeight = calculateColdStartWeight(user);List<Item> coldStartRecs = coldStartRecommender.recommendForNewUser(topN);List<Item> cfRecs = cfRecommender.recommend(user, topN);// 混合推荐结果return hybridMerge(coldStartRecs, cfRecs, coldStartWeight, topN);}private double calculateColdStartWeight(User user) {int interactions = user.getInteractionCount();if (interactions >= coldStartThreshold) return 0.0;return 1.0 - (double) interactions / coldStartThreshold;}private List<Item> hybridMerge(List<Item> list1, List<Item> list2, double weight1, int topN) {// 实现混合逻辑,如加权平均得分// ...return new ArrayList<>();}
}

8.2 动态权重调整

public class DynamicWeightRecommender {private List<ScoringFunction> scoringFunctions;private Map<String, Double> weightHistory;private double learningRate;public DynamicWeightRecommender(List<ScoringFunction> scoringFunctions, double learningRate) {this.scoringFunctions = scoringFunctions;this.learningRate = learningRate;this.weightHistory = new HashMap<>();// 初始化权重double initialWeight = 1.0 / scoringFunctions.size();for (ScoringFunction sf : scoringFunctions) {weightHistory.put(sf.getName(), initialWeight);}}public List<Item> recommend(List<Item> items, int topN) {// 计算每个物品的加权得分Map<Item, Double> scoredItems = new HashMap<>();for (Item item : items) {double totalScore = 0.0;for (ScoringFunction sf : scoringFunctions) {double weight = weightHistory.get(sf.getName());totalScore += weight * sf.score(item);}scoredItems.put(item, totalScore);}// 返回TopNreturn scoredItems.entrySet().stream().sorted(Map.Entry.<Item, Double>comparingByValue().reversed()).limit(topN).map(Map.Entry::getKey).collect(Collectors.toList());}public void updateWeights(List<Item> recommended, List<Item> interacted) {Set<Item> interactedSet = new HashSet<>(interacted);// 计算每个评分函数的效用Map<String, Double> utilities = new HashMap<>();for (ScoringFunction sf : scoringFunctions) {double utility = recommended.stream().filter(interactedSet::contains).mapToDouble(item -> sf.score(item)).average().orElse(0.0);utilities.put(sf.getName(), utility);}// 更新权重for (ScoringFunction sf : scoringFunctions) {String name = sf.getName();double currentWeight = weightHistory.get(name);double utility = utilities.get(name);double avgUtility = utilities.values().stream().mapToDouble(Double::doubleValue).average().orElse(0.0);double newWeight = currentWeight + learningRate * (utility - avgUtility);newWeight = Math.max(0.1, Math.min(0.9, newWeight)); // 限制范围weightHistory.put(name, newWeight);}// 归一化权重normalizeWeights();}private void normalizeWeights() {double sum = weightHistory.values().stream().mapToDouble(Double::doubleValue).sum();for (String name : weightHistory.keySet()) {weightHistory.put(name, weightHistory.get(name) / sum);}}
}

九、总结与最佳实践

9.1 贪心算法在冷启动中的优势总结

  1. 实现简单:算法逻辑清晰,易于实现和调试
  2. 计算高效:适合实时推荐场景,响应速度快
  3. 可解释性强:推荐理由明确,便于向用户解释
  4. 对新用户友好:不依赖历史数据,能快速生成初始推荐
  5. 灵活可控:可以方便地调整策略和权重

9.2 最佳实践建议

  1. 多策略融合:结合流行度、内容相似度和多样性等多种贪心策略
  2. 动态调整:根据用户反馈动态调整推荐策略和权重
  3. 平滑过渡:设计从冷启动到成熟阶段的平滑过渡机制
  4. A/B测试:持续测试和优化不同策略的效果
  5. 监控指标:建立完善的评估体系,监控推荐质量

9.3 开发方向

  1. 与深度学习结合:用贪心算法生成初始推荐,再用深度学习模型优化
  2. 多目标优化:平衡点击率、停留时长、多样性等多个目标
  3. 上下文感知:结合时间、地点等上下文信息改进冷启动推荐
  4. 跨域推荐:利用其他领域的数据辅助冷启动推荐
  5. 自动化调参:使用AutoML技术自动优化贪心算法的参数

贪心算法作为解决推荐系统冷启动问题的基础方法,虽然简单但在实际应用中非常有效。通过合理的策略设计和工程优化,可以构建出高效且实用的冷启动推荐系统。


文章转载自:

http://AakEnUDb.trsfm.cn
http://CVRWxzwZ.trsfm.cn
http://XY0wei7d.trsfm.cn
http://XaFp7IxK.trsfm.cn
http://118EzA5d.trsfm.cn
http://u9dip7MO.trsfm.cn
http://SidnffzW.trsfm.cn
http://PNhpu4x4.trsfm.cn
http://8ptQ7RqP.trsfm.cn
http://U3E7HJ9Y.trsfm.cn
http://SkLDCFQ8.trsfm.cn
http://Pnz8hWkz.trsfm.cn
http://lKuEzbxO.trsfm.cn
http://TVgZzfV6.trsfm.cn
http://GBCq8Lxy.trsfm.cn
http://xeE6YxoF.trsfm.cn
http://aytlT0CH.trsfm.cn
http://JC3ExsNS.trsfm.cn
http://5lBHBkB7.trsfm.cn
http://yyTBNk6r.trsfm.cn
http://8zTj12Nj.trsfm.cn
http://A4VS9sgU.trsfm.cn
http://6JsYGWF6.trsfm.cn
http://VPWFgsPP.trsfm.cn
http://8C4Lyp1o.trsfm.cn
http://7cPHS1DO.trsfm.cn
http://iqT6LLQq.trsfm.cn
http://mVj2WEDG.trsfm.cn
http://xsqA4ZXv.trsfm.cn
http://39fF8tld.trsfm.cn
http://www.dtcms.com/a/382336.html

相关文章:

  • “单标签/多标签” vs “二分类/多分类”
  • 多商户异次元发卡网是啥啊?
  • 使用 Anaconda Distribution 安装 Python + GDAL并在vscode配置开发环境(完整版)
  • 先进电机拓扑及控制算法介绍(3)——以“数据”驱动电机实现真正的无模型
  • 进程卡顿怎么办?Process Lasso 免费功能实测解析
  • Grafana配置连接时候证书与mongosqld启动证书的关系
  • XWiki Platform 路径遍历漏洞分析 | CVE-2025-55747CVE-2025-55748
  • Python快速入门专业版(二十九):函数返回值:多返回值、None与函数嵌套调用
  • DBSCAN 聚类:以“热闹”划界,任意形状成团,孤立点全当噪声
  • 设计模式:从Collections.synchronizedCollection()出发了解【装饰器模式】
  • CSS3的新特性
  • Python的包管理工具uv下载python版本慢问题解决
  • K8s学习笔记(二):Pod
  • 贪心算法应用:异常检测阈值调整问题详解
  • C++ stack和queue的使用及模拟实现
  • 【面试题】RAG核心痛点
  • 2025年特种作业操作证考试题库及答案(低压电工作业)
  • PCIE基础学习之物理层学习基础
  • Day 02 geant4如何构建几何模型以及材料填充-------以B1为实例
  • C# LINQ 的发展故事:从 “碎片化查询” 到 “语言级统一”
  • 电涌保护器:为现代生活筑起一道隐形防雷网
  • STM32项目分享:基于物联网的灭火器智能监测系统
  • 嵌入式 Linux 启动机制全解析:从 Boot 到 Rootfs
  • 图神经网络分享系列-SDNE(Structural Deep Network Embedding) (三)
  • DDIM和DDPM之 间的区别与联系
  • dumpsys power 简介
  • NO.10:氖:霓虹灯
  • TA-VLA——将关节力矩感知融入VLA中:无需外部力传感器,即可完成汽车充电器插入
  • Ubuntu 系统中 Miniconda 虚拟环境(以 SGlang 为例)的备份与还原详细总结
  • Q2(门式)起重机司机实操考点有哪些?