当前位置: 首页 > news >正文

错误于make.names(vnames, unique = TRUE): invalid multibyte string 9 使用 R 语言进行数据处理时

在使用 R 语言进行数据处理时,遇到错误 Error in make.names(vnames, unique = TRUE): invalid multibyte string 9 通常是因为变量名中包含了无法正确处理的非ASCII字符(如中文、特殊符号等)。这种错误通常发生在尝试创建变量名或者修改数据框(data frame)的列名时。

解决方法

第一 首先保证文件格式是utf-8的。可以另存为 utf-8文件格式

清理变量名:确保你的变量名只包含英文字母、数字、下划线(_)和点(.)。对于中文或其他特殊字符,你需要将它们替换为有效的变量名。

使用make.names函数:这个函数可以帮助你生成有效的R变量名,它会将无效字符替换为点(.),并保证名称的唯一性。

示例代码

假设你有一个包含非ASCII字符的变量名列表,你可以这样处理:

第二 列名的问题 假设 vnames 是包含非ASCII字符的变量名列表

vnames <- c(“姓名”, “年龄”, “职业”)

使用 make.names 清理并确保唯一性

clean_names <- make.names(vnames, unique = TRUE)
print(clean_names)

如果你在修改数据框的列名,可以这样做:

假设 df 是你的数据框

df <- data.frame(姓名 = c(“张三”, “李四”), 年龄 = c(25, 30), 职业 = c(“教师”, “工程师”))

修改列名为有效的R变量名

names(df) <- make.names(names(df))
print(names(df))
注意事项

确保在处理前备份你的数据,以防不测。

如果你的数据中包含非ASCII字符,并且你想保留这些字符的一部分或全部作为变量名,你可以手动指定一个规则来替换这些字符,例如使用iconv函数将字符转换为ASCII兼容的格式:

将中文字符转换为拼音或其他ASCII字符串

library(jiebaR)
pinyin_names <- extractor(vnames) # 使用jiebaR包的extractor函数提取拼音
clean_names <- make.names(pinyin_names, unique = TRUE)
print(clean_names)

这样处理后,你的变量名将不包含任何非ASCII字符,从而避免出现上述错误。

第三 列名的格式问题

正确的

!Series_title	"Modeling lethal prostate cancer variant with small cell carcinoma features expression profile"
!Series_geo_accession	"GSE32967"
!Series_status	"Public on Jan 01 2012"
!Series_submission_date	"Oct 13 2011"
!Series_last_update_date	"Mar 25 2019"
!Series_pubmed_id	"22156612"
!Series_summary	"Purpose: Small-cell prostate carcinoma SCPCmorphology predicts for a distinct clinical behavior, resistance to androgen ablation, and frequent but short responses to chemotherapy. The model systems we report reflect the biology of the human disease and can be used to improve our understanding of SCPC and to develop new therapeutic strategies for it."
!Series_platform_id	"GPL570"
!Series_platform_taxid	"9606"
!Series_sample_taxid	"9606"
!Series_relation	"SubSeries of: GSE33054"
!series_matrix_table_begin

错误的

!Series_title	"Modeling lethal prostate cancer variant with small cell carcinoma features expression profile"
!Series_geo_accession	"GSE32967"
!Series_status	"Public on Jan 01 2012"
!Series_submission_date	"Oct 13 2011"
!Series_last_update_date	"Mar 25 2019"
!Series_pubmed_id	"22156612"
!Series_summary	"Purpose: Small-cell prostate carcinoma SCPCmorphology predicts for a distinct clinical behavior, resistance to androgen ablation, and frequent but short responses to chemotherapy. The model systems we report reflect the biology of the human disease and can be used to improve our understanding of SCPC and to develop new therapeutic strategies for it."
!Series_summary	"Experimental Design: We developed a set of CRPC xenografts and examined their fidelity to their human tumors of origin. We compared the expression and genomic profiles of SCPC and large cell neuroendocrine carcinoma LCNECxenografts to those of typical prostate adenocarcinoma xenografts and used a panel of 60 human tumors to validate our findings using immunohistochemistry."
!Series_summary	"Results: We show that SCPC and LCNEC xenograft models retain high fidelity to their human tumors of origin and are characterized by a marked upregulation of UBE2C and other M-phase cell cycle genes in the absence of AR, retinoblastoma RB1and cyclin D1 CCND1expression and confirm these findings in a panel of CRPC patients’ samples. In addition, array comparative genomic hybridization of the xenografts showed that the SCPC/LCNEC tumors display more copy number variations than the adenocarcinoma counterparts and that there is amplification of the UBE2C locus and microdeletions of RB1 in a subset of these, but no AR nor CCND1 deletions. Moreover, the AR, RB1, and CCND1 promoters showed no CpG methylation in the SCPC xenografts."
!Series_summary	"Conclusion: Modeling human prostate cancer with xenografts allows in-depth and detailed studies of its underlying biology. The detailed clinical annotation of the donor tumors enables associations of anticipated relevance to be made. Futures studies in the xenografts will address the functional significance of the findings."
!Series_overall_design	"22 samples were analysed, that included MDA PCa 79 n = 3, 117-9 n = 3, 130 n = 2, 144-4 n = 4, 144-13 n = 5, 146-10 n = 3, 155-2 n = 1, and 155-12 n = 1. MDA PCA 79, 117-9 and 130 samples had the pathologic characteristics of prostate adenocarcinoma and were compared against MDA PCA 144-4, 144-13, 146-10 and 155-12 that have the pathologic features of prostate small cell/ large cell neuroendocrine carcinoma"
!Series_type	"Expression profiling by array"
!Series_contributor	"Ana,,Aparicio"
!Series_contributor	"Sankar,,Maity"
!Series_contributor	"Vassiliki,,Tzelepi"
!Series_contributor	"Lu,,Jing-Fang"
!Series_contributor	"Brittany,,Kleb"
!Series_contributor	"Nora,M,Navone"
!Series_contributor	"Jiexin,,Zhang"
!Series_contributor	"Shoudan,,Liang"
!Series_sample_id	"GSM816546 GSM816547 GSM816548 GSM816549 GSM816550 GSM816551 GSM816552 GSM816553 GSM816554 GSM816555 GSM816556 GSM816557 GSM816558 GSM816559 GSM816560 GSM816561 GSM816562 GSM816563 GSM816564 GSM816565 GSM816566 GSM816567 "
!Series_contact_name	"Jiexin,,Zhang"!Series_contact_department	"Bioinformatics & Computational Biology"
!Series_contact_institute	"UT MD Anderson Cancer Center"
!Series_contact_address	"1515 Holcombe Blvd"
!Series_contact_city	"Houston"
!Series_contact_state	"TX"
!Series_contact_zip/postal_code	"77030"
!Series_contact_country	"USA"
!Series_platform_id	"GPL570"
!Series_platform_taxid	"9606"
!Series_sample_taxid	"9606"
!Series_relation	"SubSeries of: GSE33054"
!Sample_geo_accession	"GSM816546"	"GSM816547"	"GSM816548"	"GSM816549"	"GSM816550"	"GSM816551"	"GSM816552"	"GSM816553"	"GSM816554"	"GSM816555"	"GSM816556"	"GSM816557"	"GSM816558"	"GSM816559"	"GSM816560"	"GSM816561"	"GSM816562"	"GSM816563"	"GSM816564"	"GSM816565"	"GSM816566"	"GSM816567"
!Sample_submission_date	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"	"Oct 13 2011"
!series_matrix_table_begin

Sample_submission_date 对应好多 解释


文章转载自:

http://3gXe4pyl.mLzyx.cn
http://4vnfBXo4.mLzyx.cn
http://oYOBu41Q.mLzyx.cn
http://GKq6BKDf.mLzyx.cn
http://DRy7wm89.mLzyx.cn
http://5RTJ9Bce.mLzyx.cn
http://lPBDYJre.mLzyx.cn
http://2Z5mEHZC.mLzyx.cn
http://9Xhegghw.mLzyx.cn
http://6yZIFuxe.mLzyx.cn
http://QJpiWSwW.mLzyx.cn
http://vLHoQRyP.mLzyx.cn
http://yaBzH9Eo.mLzyx.cn
http://6MTVfWP8.mLzyx.cn
http://3GbtFN4v.mLzyx.cn
http://t5kFJ3bb.mLzyx.cn
http://90CkHkns.mLzyx.cn
http://08iso8Q9.mLzyx.cn
http://c0OKz73J.mLzyx.cn
http://FB1CMRHA.mLzyx.cn
http://w2k3xwn2.mLzyx.cn
http://QZ6sTsJK.mLzyx.cn
http://2syxxzVT.mLzyx.cn
http://so1noRwE.mLzyx.cn
http://St4c0gdb.mLzyx.cn
http://XqEX3eCl.mLzyx.cn
http://HneHaYEM.mLzyx.cn
http://GwMfvdby.mLzyx.cn
http://fxMH1L79.mLzyx.cn
http://ZrR1jmvo.mLzyx.cn
http://www.dtcms.com/a/378359.html

相关文章:

  • 前端基础标签
  • 深度学习基本模块:ConvTranspose2D 二维转置卷积层
  • 多模态数据治理新范式:衡石Agentic BI如何统一结构化与非结构化数据?
  • Gopeed下载器本地部署指南:cpolar实现远程任务管理
  • App 苹果 上架全流程解析 iOS 应用发布步骤、App Store 上架流程
  • unity UGUI 鼠标画线
  • ALBEF(Align Before Fuse)
  • redis 集群——redis cluster(去中心化)
  • k8s部署kafka三节点集群
  • 11.ImGui-加载字体和中文
  • 大模型推理革命
  • 项目-sqlite类的实现
  • 物联网领域中PHP框架的最佳选择有哪些?
  • ARM1.(ARM体系结构)
  • Linux开机启动设置全攻略
  • 解决Pytest参数化测试中文显示乱码问题:两种高效方法
  • PHP弱类型比较在CTF比赛中的深入分析与实战应用
  • 科大讯飞一面
  • html块标签和内联标签的通俗理解
  • 【C++】STL--Vector使用极其模拟实现
  • QT子线程与GUI线程安全交互
  • 论 Intel CPU 进化史:德承工控机全面进化 搭载新一代 Intel® Core™ Ultra 7/5/3 处理器
  • 论文阅读/博弈论/拍卖:《Truthful Auction for Cooperative Communications》
  • 【论文阅读】Towards Privacy-Enhanced and Robust Clustered Federated Learning
  • [论文阅读] 告别“数量为王”:双轨道会议模型+LS,破解AI时代学术交流困局
  • 【UE】2D SphereNormalsMap - 实时计算2D “球形法线” 贴图
  • 保护模式下的特权级_考研倒计时 100 days
  • 中科米堆CASAIM高精度蓝光3D扫描激光抄数服务逆向三维建模
  • 【Canvas与几何图案】六钩内嵌大卫之星黑白图案
  • 智能体工作流画布:提升企业业务流程自动化效率