当前位置: 首页 > news >正文

C++ Bellman-Ford算法

算法特点:

1 可求负边权 2 单源最短路 3 顶点数x边数 最好小于1000000 4 少量数据结构基础和一点点的算法基础

Bellman-Ford 算法可以在最短路存在的情况下求出最短路,并且能够判断图中是否存在负边权。算法是基于这样一个故事:一个图的最短路径如果存在,那么最短路径中必定不存在负权圈,所以最短路的顶点数除了起点外最多只有n-1个点。

算法原理:算法同样利用了最短路的最优子结构性质,用d[i]表示起点s到i的最短路,那么边数上限为j的最短路可以通过边数上限为j-1的最短路加入一条边得到,通过n-1次迭代,最后求得s到所有点的最短路。

算法描述:

对于图 G = <V, E>,源点为s,d[i]表示s到i的最短路

1 初始化所有顶点d[i] = inf,令d[s] = 0, 计数器等于 c = 0

2 枚举每条边w(u ,v) ,如果d[u] != inf ,则更新d[v] = min(d[v], d[u] + w(u, v))

3 计数器c自增1, 当c== n-1时算法结束,否则重复步骤2。

这个算法并没有考虑负权圈的问题,如果存在负权圈的话,那么第二步操作的更新就会没有止境,所以判定负权圈的算法就出来了,只需要在第n次继续进行第二步的松弛操作,如果至少有一条边被更新,则肯定存在负权圈。

代码分析:

第一步定义边结构,Edge(u, v, w)

第二步边的添加,

function addEdge(edges, u, v, w)

  edges.append(Edge(u, v, w));

第三步建图

addEdge(edges, u1, v1, w1);

addEdge(edges, u2, v2, w2);

...

第四步,实现松弛操作

function doRelax(edges, d[maxn])

  isRelax = False

  for i -> (0, edges.size()-1)

    u, v, w = edges[i]

    if d[u] + w < d[v]

      d[v] = d[u] + w

      isRelax = true;

return isRelax

算法核心

function bellman(n, s, edges, d[maxn])

  for i -> (0, n-1)

    d[i] = inf

  d[s] = 0

  for i -> (1, n-1)

    if not doRelax(edges, d)

      return false

  return doRelax

时间复杂度,每次松弛操作都需要遍历所有的边,边数为m,最多遍历n次,所以总的时间复杂度为o(mn)

代码练习,对应蓝桥云课 出差 代码见下

#include <iostream>
using namespace std;#define maxn 1001
#define maxm 20001
#define eType int
#define inf 1000000000struct EDGE{int u, v;eType w;
};int doRelax(int m, EDGE* edges, eType* dist){int isRelax = 0;for(int i=0; i<m; ++i){int u = edges[i].u;int v = edges[i].v;eType w = edges[i].w;if(dist[u] + w < dist[v]){dist[v] = dist[u] + w;isRelax = 1;}}return isRelax;
}int bellman(int n, int m, EDGE* edges, int s, eType* dist){for(int i=0; i<n; ++i){dist[i] = (i == s ? 0:inf);}for(int i = 0; i<n-1; ++i){if(!doRelax(m, edges, dist)){return 0;}}return doRelax(m, edges, dist);
}int n, e, m;
EDGE edges[maxm];
eType dist[maxn];
int c[maxn];int main()
{cin >> n >> e;for(int i=0; i<n; ++i){cin >> c[i];}c[n-1] = 0;m = 0;for(int i=0; i<e; ++i){int u, v, w;cin >> u >> v >> w;edges[m].u = u - 1;edges[m].v = v - 1;edges[m].w = w + c[v - 1];m++;edges[m].u = v - 1;edges[m].v = u - 1;edges[m].w = w + c[u - 1];m++;}bellman(n, m, edges, 0, dist);cout << dist[n - 1] << endl;// 请在此输入您的代码return 0;
}

代码练习,对应蓝桥云课 字母阶梯游戏,代码见下

#include <iostream>
#include <cstring>
using namespace std;#define maxn 1001
#define maxm 250001
#define eType int
#define inf 1000000000struct EDGE{int u, v;eType w;
};int doRelax(int m, EDGE* edges, eType* dist){int isRelax = 0;for(int i=0; i<m; ++i){int u = edges[i].u;int v = edges[i].v;eType w = edges[i].w;if(dist[u] + w < dist[v]){dist[v] = dist[u] + w;isRelax = 1;}}return isRelax;
}int bellman(int n, int m, EDGE* edges, int s, eType* dist){for(int i=0; i<n; ++i){dist[i] = (i == s ? 0:inf);}for(int i = 0; i<n-1; ++i){if(!doRelax(m, edges, dist)){return 0;}}return doRelax(m, edges, dist);
}int n, m;
EDGE edges[maxm];
eType dist[maxn];
int c[maxn];int calcEdge(char *a, char *b){int ans = 0;for(int i=0; a[i]; ++i){if(a[i] != b[i]){++ans;}if(ans > 1){return 0;}}return 1;
}char str[maxn][maxn];
char st[maxn], en[maxn];int main()
{cin >> n;m = 0;for(int i=0; i<n; ++i){cin >> str[i];}for(int i=0; i<n; ++i){for(int j = i+1; j<n; ++j){if (calcEdge(str[i], str[j])){edges[m].u = i;edges[m].v = j;edges[m].w = 1;m++;edges[m].u = j;edges[m].v = i;edges[m].w = 1;m++;}}}cin >> st;cin >> en;int s, d;for(int i=0; i<n; ++i){if(!strcmp(st, str[i])) s = i;if(!strcmp(en, str[i])) d = i;}bellman(n, m, edges, s, dist);if(dist[d] == inf) dist[d] = -1;cout << dist[d] << endl;// 请在此输入您的代码return 0;
}

代码练习,对应蓝桥云课小怂的黄牛派对 代码见下

#include <iostream>
using namespace std;#define maxn 1001
#define maxm 100001
#define eType int
#define inf 1000000000struct EDGE{int u, v;eType w;
};int doRelax(int m, EDGE* edges, eType* dist){int isRelax = 0;for(int i=0; i<m; ++i){int u = edges[i].u;int v = edges[i].v;eType w = edges[i].w;if(dist[u] + w < dist[v]){dist[v] = dist[u] + w;isRelax = 1;}}return isRelax;
}int bellman(int n, int m, EDGE* edges, int s, eType* dist){for(int i=0; i<n; ++i){dist[i] = (i == s ? 0:inf);}for(int i = 0; i<n-1; ++i){if(!doRelax(m, edges, dist)){return 0;}}return doRelax(m, edges, dist);
}int n, m;
EDGE edges[maxm];
eType dist1[maxn], dist2[maxn];
int u[maxm], v[maxm], w[maxm];int main()
{int x;cin >> n >> m >> x;--x;for(int i=0; i<m; ++i){cin >> u[i] >> v[i] >> w[i];--u[i];--v[i];}for(int i=0; i<m; ++i){edges[i].u = u[i];edges[i].v = v[i];edges[i].w = w[i];}bellman(n, m, edges, x, dist1);for(int i=0; i<m; ++i){edges[i].u = v[i];edges[i].v = u[i];edges[i].w = w[i];}bellman(n, m, edges, x, dist2);int ret = 0;for(int i=0; i<n; ++i){ret = max(ret, dist1[i] + dist2[i]);}cout << ret << endl;// 请在此输入您的代码return 0;
}


http://www.dtcms.com/a/362197.html

相关文章:

  • Linux并发与竞争实验
  • 软件使用教程(四):Jupyter Notebook 终极使用指南
  • 数据分析编程第八步:文本处理
  • 设计模式-状态模式 Java
  • 华清远见25072班I/O学习day2
  • PostgreSQL备份指南:逻辑与物理备份详解
  • 椭圆曲线群运算与困难问题
  • 【数据分享】多份土地利用矢量shp数据分享-澳门
  • AI产品经理面试宝典第81天:RAG系统架构演进与面试核心要点解析
  • Qt中的信号与槽机制的主要优点
  • 自动化测试时,chrome浏览器启动后闪退的问题
  • 【趣味阅读】Python 文件头的秘密:从编码声明到 Shebang
  • VisionProC#联合编程相机实战开发
  • 【云存储桶安全】怎么满足业务需求,又最大程度上满足信息安全要求呢?
  • 1792. 最大平均通过率
  • 学习:uniapp全栈微信小程序vue3后台-暂时停更
  • 本地没有公网ip?用cloudflare部署内网穿透服务器,随时随地用自定义域名访问自己应用端口资源
  • 液态神经网络:智能制造的新引擎
  • 【跨境电商】上中下游解释,以宠物行业为例
  • 洛谷 c++ P1177 【模板】排序 题解
  • AutoSar RTE介绍
  • 特征增强方法【特征构建】
  • MVC、三层架构
  • RT-DETR网络结构
  • 并发之线程
  • 【思考】WSL是什么
  • 一、SVN与svnbucket.com常见问题解答
  • 从组分到涌现:系统科学视域下结构、功能与层级的辨析及在人工智能中的应用
  • 设备管理软件正在成为制造业企业的战略重点_HawkEye智能运维平台_璞华大数据
  • 对比Mysql理解OceanBase中的租户设计