当前位置: 首页 > news >正文

动手学深度学习(pytorch版):第七章节—现代卷积神经网络(2)使用块的网络(VGG)

虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续设计新的网络。 

与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络架构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层,现在又转向块,重复层的模式。

1. VGG块

经典卷积神经网络的基本组成部分是下面的这个序列:

  1. 带填充以保持分辨率的卷积层;

  2. 非线性激活函数,如ReLU;

  3. 汇聚层,如最大汇聚层。

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。在最初的VGG论文中 ,作者使用了带有卷积核、填充为1(保持高度和宽度)的卷积层,和带有汇聚窗口、步幅为2(每个块后的分辨率减半)的最大汇聚层。

在下面的代码中,定义了一个名为vgg_block的函数来实现一个VGG块。

该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels.

import torch
from torch import nn
from d2l import torch as d2ldef vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)

2. VGG网络

与AlexNet、LeNet一样,VGG网络可以分为两部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。

VGG神经网络连接几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里卷积层个数和输出通道数。全连接模块则与AlexNet中的相同。

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

下面的代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。

def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs, in_channels, out_channels))in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)

接下来,将构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状。

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape:     torch.Size([1, 64, 112, 112])
Sequential output shape:     torch.Size([1, 128, 56, 56])
Sequential output shape:     torch.Size([1, 256, 28, 28])
Sequential output shape:     torch.Size([1, 512, 14, 14])
Sequential output shape:     torch.Size([1, 512, 7, 7])
Flatten output shape:        torch.Size([1, 25088])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 10])

正如从代码中所看到的,在每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

3. 训练模型

由于VGG-11比AlexNet计算量更大,因此构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集。

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

除了使用略高的学习率外,模型训练AlexNet类似。

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
http://www.dtcms.com/a/352027.html

相关文章:

  • MyBatis 流式查询详解
  • 使用 mcp-use 构建极简 Web 自动化测试智能体「喂饭教程」
  • 前端漏洞(上)- CORS漏洞
  • 静态HTML网页模板设计与实现
  • python基础-面向对象编程(OOP)
  • 我们来学mysql -- safe启动
  • Mysql——日志
  • 【45页PPT】制造行业数据资产运营平台需求方案(附下载方式)
  • 【科研绘图系列】R语言在海洋生态学中的应用:浮游植物糖类组成与溶解性有机碳的关系
  • OpenCV打开视频函数VideoCapture使用详解
  • Linux桌面主题的安装
  • 33.ansible 比较重要的配置文件
  • 运算符(2)
  • 审核问题——鸿蒙审核返回安装失败,可以尝试云调试
  • timedatectl查看时间同步
  • Windows本地部署大模型方式对比
  • 约束满足问题(CSP)--搜索算法在实际场景中的应用
  • 深度学习篇---LeNet-5
  • 国产银河麒麟SP1桌面系统如何免密登录系统
  • Rust:函数与控制流
  • MATLAB在生态环境数据处理与分析中的应用
  • 基于MATLAB的雷达系统设计中的信号处理程序
  • Java:Docx4j类库简介及使用
  • 在 Vue 中嵌入 Unity WebGL 并实现双向通信
  • 有 100W 个数,有一个函数是可以高效查找并删除某个数,问应该用什么数据结构去存这 100W 个数
  • 文献阅读笔记【雷达信号分选】:基于机器学习的雷达信号分选方法综述
  • 在python 代码中调用rust 源码库操作步骤
  • Excel跨sheet检索提取信息
  • 最简洁yolov8 C++配置教程
  • Leetcode+Java+dpI