【STM32】HAL库中的实现(六):DAC (数模转换)
DAC 简介
DAC(Digital to Analog Converter):将 MCU 中的数字信号(如 04095)转换为对应的模拟电压输出(03.3V)。
📚 资料推荐
💡 STM32F1 DAC 应用手册(ST 官方)
📘 HAL DAC Waveform Generation 示例
📦 CubeMX 中 DAC + DMA + TIM 正弦波输出示例
🔧 用 STM32 输出音频的 DAC 案例(.wav 文件播放)
STM32 DAC 特性(以 STM32F103 为例)
分辨率:12 位(0~4095)
通道数:2 路(DAC_OUT1、DAC_OUT2)
输出范围:0 ~ VREF(通常是 3.3V)
支持触发方式:软件、定时器、外部中断
可配合DMA 输出连续波形
CubeMX 配置说明
ADC 配置(如下图):
通道:ADC1_IN10(PC0)
模式:Independent mode
触发方式:软件触发
采样时间设为 239.5 cycles(更稳定)
HAL库中 DAC 的使用流程
步骤 | 函数 |
---|---|
1️⃣ 初始化 DAC | MX_DAC_Init() |
2️⃣ 启动 DAC 通道 | HAL_DAC_Start() |
3️⃣ 设置 DAC 输出值 | HAL_DAC_SetValue() |
4️⃣ 可选:DMA 输出波形 | HAL_DAC_Start_DMA() |
5️⃣ 可选:定时器控制输出频率 | Trigger = TIMx_TRGO |
DAC 配置(如下图):
OUT1:启用
Trigger:None(软件触发)
Output Buffer:Disable(默认关闭)
📌 DAC_OUT1 对应引脚:PA4
HAL 代码结构
当前介绍是完成 STM32 中 ADC(模数转换)+ DAC(数模转换) 的双向转换实验。 写代码的时候一定要保证代码结构清晰,CubeMX 配置也要非常规范。我们理解每个知识点务必要遵循:任务目标 ——> 整体结构和原理 ——> CubeMX 配置 ——> HAL 实现 ——> 运行效果 ——> 流程优化 ——> 需求迭代和更新。
✅ DAC 初始化和启动
HAL_DAC_Start(&hdac, DAC_CHANNEL_1); // 启用 DAC 通道 1
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 0); // 初始输出为 0
DAC_ALIGN_12B_R
:12 位右对齐(最大值 4095)
输出电压计算:
Vout = (dac_setval / 4095.0) * VREF
✅ DAC 输出值渐变逻辑
输出电压从 0V → 3.3V → 0V 逐渐变化。
每秒更新一次,配合 ADC 采样观察变化曲线。
if ((dac_setval < 4095) && (Data_dir == 0)) dac_setval++;
if ((dac_setval > 0) && (Data_dir == 1)) dac_setval--;if (dac_setval >= 4095) Data_dir = 1;
if (dac_setval == 0) Data_dir = 0;HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, dac_setval);
实验工作原理
步骤:
① DAC 输出从 0 → 4095(0~3.3V)
② DAC_OUT1(PA4)连接到 ADC_IN10(PC0)
③ ADC 采样电压,转换为数字值
④ UART 串口输出 ADC_Value
⑤ 实时观察 DAC 输出变化对 ADC 的影响
完整代码
📄 main.c
/* USER CODE BEGIN Header */
/********************************************************************************* @file : main.c* @brief : Main program body******************************************************************************* @attention** Copyright (c) 2025 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dac.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint16_t ADC_Value = 0;uint16_t dac_setval = 0;uint8_t Data_dir = 0;
/* USER CODE END 0 *//*** @brief The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_ADC1_Init();MX_DAC_Init();/* USER CODE BEGIN 2 */HAL_UARTEx_ReceiveToIdle_IT( &huart1 , U1RxData, U1RxDataSize);HAL_ADCEx_Calibration_Start( &hadc1 ); //开启校准HAL_DAC_Start( &hdac, DAC_CHANNEL_1); //开启DAC通道 输出使能HAL_DAC_SetValue( &hdac, DAC_CHANNEL_1 , DAC_ALIGN_12B_R, 0); //设置DAC输出的初始值为 0/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if((dac_setval < 4095) && (Data_dir == 0)) dac_setval++;if((dac_setval > 0) && (Data_dir == 1)) dac_setval--;if(dac_setval > 4095){dac_setval = 4095;Data_dir = 1;}if(dac_setval <= 0){dac_setval = 0;Data_dir = 0;}printf(" dac_setval = %d \r\n",dac_setval);HAL_DAC_SetValue( &hdac, DAC_CHANNEL_1 , DAC_ALIGN_12B_R, dac_setval);HAL_ADC_Start( &hadc1 ); //开启ADC转换HAL_ADC_PollForConversion( &hadc1, 50); //等待转换完成if(HAL_IS_BIT_SET( HAL_ADC_GetState( &hadc1 ), HAL_ADC_STATE_REG_EOC) ) //判断是否转换完成{ADC_Value = HAL_ADC_GetValue(&hadc1);printf(" ADC_Value = %d \r\n",ADC_Value);}HAL_Delay(1000);/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** @brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* @param file: pointer to the source file name* @param line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
测试验证:
验证 DAC+ADC 的结果:
还可以采用其他方法观测结果是否正确:
万用表测 PA4 电压 随 dac_setval 上下变化(0~3.3V)
ADC 采样值与 DAC 输出对应 理论上 ADC_Value ≈ dac_setval(误差几位)
串口观察输出 ADC_Value 随 dac_setval 对称变化
示波器观测 输出电压呈锯齿波形(线性上升下降)
以上。 这便是 STM32 中 ADC(模数转换)+ DAC(数模转换) 的双向转换实验 的实现。
以上,欢迎有从事同行业的电子信息工程、互联网通信、嵌入式开发的朋友共同探讨与提问,我可以提供实战演示或模板库。希望内容能够对你产生帮助!