【高等数学】第九章 多元函数微分法及其应用——第六节 多元函数微分学的几何应用
上一节:【高等数学】第九章 多元函数微分法及其应用——第五节 隐函数的求导公式
总目录:【高等数学】 目录
文章目录
- 1. 一元向量值函数及其导数
- 2. 空间曲线的切线与法平面
- 3. 曲面的切平面与法线
1. 一元向量值函数及其导数
- 一元向量值函数
设数集D⊂RD \subset \mathbf{R}D⊂R,则称映射f:D→Rn\boldsymbol{f}: D \to \mathbf{R}^nf:D→Rn为一元向量值函数,通常记为r=f(t)=f1(t)e1+f2(t)e2+⋯+fn(t)en,t∈D,\boldsymbol{r} = \boldsymbol{f}(t)=f_1(t)\boldsymbol{e_1}+f_2(t)\boldsymbol{e_2}+\dots+f_n(t)\boldsymbol{e_n}, \quad t \in D,r=f(t)=f1(t)e1+f2(t)e2+⋯+fn(t)en,t∈D,其中数集DDD称为函数的定义域,ttt称为自变量,r\boldsymbol{r}r称为因变量.
一元向量值函数是普通一元函数的推广,自变量ttt依然取实数值,但因变量r\boldsymbol{r}r不取实数值,而取值为nnn维向量. - 向量值函数的图形
设(变)向量r\boldsymbol{r}r的起点取在坐标系的原点OOO处,终点在MMM处,即r=OM→\boldsymbol{r} = \overrightarrow{OM}r=OM.
当ttt改变时,r\boldsymbol{r}r跟着改变,从而终点MMM也随之改变. 终点MMM的轨迹(记作曲线Γ\varGammaΓ)称为向量值函数r=f(t)\boldsymbol{r} = \boldsymbol{f}(t)r=f(t) (t∈Dt \in Dt∈D)的终端曲线,曲线Γ\varGammaΓ也称为向量值函数r=f(t)\boldsymbol{r} = \boldsymbol{f}(t)r=f(t) (t∈Dt \in Dt∈D)的图形.
由于向量值函数r=f(t)\boldsymbol{r} = \boldsymbol{f}(t)r=f(t) (t∈Dt \in Dt∈D)与空间曲线Γ\varGammaΓ是一一对应的,
因此r=f(t)\boldsymbol{r} = \boldsymbol{f}(t)r=f(t) 称为曲线Γ\varGammaΓ的向量方程(实际上是空间曲线的参数方程). - 向量值函数的极限
设向量值函数f(t)\boldsymbol{f}(t)f(t)在点t0t_0t0的某一去心邻域内有定义,
如果存在一个常向量r0\boldsymbol{r_0}r0,对于任意给定的正数ε\varepsilonε,总存在正数δ\deltaδ,使得当ttt满足0<∣t−t0∣<δ0 < |t - t_0| < \delta0<∣t−t0∣<δ时,对应的函数值f(t)\boldsymbol{f}(t)f(t)都满足不等式 ∣f(t)−r0∣<ε,|\boldsymbol{f}(t) - \boldsymbol{r_0}| < \varepsilon,∣f(t)−r0∣<ε,那么,常向量r0\boldsymbol{r_0}r0就叫做向量值函数f(t)\boldsymbol{f}(t)f(t)当t→t0t \to t_0t→t0时的极限,记作limt→t0f(t)=r0或f(t)→r0,t→t0.\lim\limits_{t \to t_0} \boldsymbol{f}(t) = \boldsymbol{r_0} \quad \text{或} \quad \boldsymbol{f}(t) \to \boldsymbol{r_0}, \, t \to t_0.t→t0limf(t)=r0或f(t)→r0,t→t0. 向量值函数f(t)\boldsymbol{f}(t)f(t)当t→t0t \to t_0t→t0时的极限存在的充分必要条件是f(t)\boldsymbol{f}(t)f(t)的三个分量函数f1(t)f_1(t)f1(t),f2(t)f_2(t)f2(t),f3(t)f_3(t)f3(t)当t→t0t \to t_0t→t0时的极限都存在
在f(t)\boldsymbol{f}(t)f(t)极限存在时,向量值函数取极限等价于对应分量取极限向量模等于各分量模之和的平方根
- 向量值函数的连续性
设向量值函数f(t)\boldsymbol{f}(t)f(t)在点t0t_0t0的某一邻域内有定义,若 limt→t0f(t)=f(t0),\lim\limits_{t \to t_0} \boldsymbol{f}(t) = \boldsymbol{f}(t_0),t→t0limf(t)=f(t0), 则称向量值函数f(t)\boldsymbol{f}(t)f(t)在t0t_0t0连续.
向量值函数f(t)\boldsymbol{f}(t)f(t)在t0t_0t0连续的充分必要条件是f(t)\boldsymbol{f}(t)f(t)的三个分量函数f1(t)f_1(t)f1(t),f2(t)f_2(t)f2(t),f3(t)f_3(t)f3(t)都在t0t_0t0连续. - 向量值函数的导数
设向量值函数r=f(t)\boldsymbol{r} = \boldsymbol{f}(t)r=f(t)在点t0t_0t0的某一邻域内有定义,如果limΔt→0ΔrΔt=limΔt→0f(t0+Δt)−f(t0)Δt\lim\limits_{\Delta t \to 0} \dfrac{\Delta \boldsymbol{r}}{\Delta t} = \lim\limits_{\Delta t \to 0} \dfrac{ \boldsymbol{f}(t_0 + \Delta t) - \boldsymbol{f}(t_0) }{ \Delta t }Δt→0limΔtΔr=Δt→0limΔtf(t0+Δt)−f(t0) 存在,
那么就称这个极限向量为向量值函数r=f(t)\boldsymbol{r} = \boldsymbol{f}(t)r=f(t)在t0t_0t0处的导数或导向量,记作f′(t0)\boldsymbol{f}'(t_0)f′(t0)或drdt∣t=t0\left. \dfrac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} \right|_{t = t_0}dtdrt=t0.
向量值函数f(t)\boldsymbol{f}(t)f(t)在t0t_0t0可导(即存在导数)的充分必要条件是f(t)\boldsymbol{f}(t)f(t)的三个分量函数f1(t)f_1(t)f1(t),f2(t)f_2(t)f2(t),f3(t)f_3(t)f3(t)都在t0t_0t0可导
当f(t)\boldsymbol{f}(t)f(t)在t0t_0t0可导时,其导数等价于各分量的取导数 - 向量值函数的求导法则
- ddtC=0\dfrac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{C} = \boldsymbol{0}dtdC=0
- ddt[cu(t)]=cu′(t)\dfrac{\mathrm{d}}{\mathrm{d}t} \left[ c\boldsymbol{u}(t) \right] = c\boldsymbol{u}'(t)dtd[cu(t)]=cu′(t)
- ddt[u(t)±v(t)]=u′(t)±v′(t)\dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \boldsymbol{u}(t) \pm \boldsymbol{v}(t) \right] = \boldsymbol{u}'(t) \pm \boldsymbol{v}'(t)dtd[u(t)±v(t)]=u′(t)±v′(t)
- ddt[φ(t)u(t)]=φ′(t)u(t)+φ(t)u′(t)\dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \varphi(t) \boldsymbol{u}(t) \right] = \varphi'(t) \boldsymbol{u}(t) + \varphi(t) \boldsymbol{u}'(t)dtd[φ(t)u(t)]=φ′(t)u(t)+φ(t)u′(t)
- ddt[u(t)⋅v(t)]=u′(t)⋅v(t)+u(t)⋅v′(t)\dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \boldsymbol{u}(t) \cdot \boldsymbol{v}(t) \right] = \boldsymbol{u}'(t) \cdot \boldsymbol{v}(t) + \boldsymbol{u}(t) \cdot \boldsymbol{v}'(t)dtd[u(t)⋅v(t)]=u′(t)⋅v(t)+u(t)⋅v′(t)
u(t)⋅v(t)=u1v1+u2v2\boldsymbol{u}(t) \cdot \boldsymbol{v}(t)=u_1v_1+u_2v_2u(t)⋅v(t)=u1v1+u2v2
u′(t)⋅v(t)+u(t)⋅v′(t)=u1′v1+u2′v2+u1v1′+u2v2′\boldsymbol{u}'(t) \cdot \boldsymbol{v}(t) + \boldsymbol{u}(t) \cdot \boldsymbol{v}'(t)=u_1'v_1+u_2'v_2+u_1v_1'+u_2v_2'u′(t)⋅v(t)+u(t)⋅v′(t)=u1′v1+u2′v2+u1v1′+u2v2′ - ddt[u(t)×v(t)]=u′(t)×v(t)+u(t)×v′(t)\dfrac{\mathrm{d}}{\mathrm{d}t} \left[ \boldsymbol{u}(t) \times \boldsymbol{v}(t) \right] = \boldsymbol{u}'(t) \times \boldsymbol{v}(t) + \boldsymbol{u}(t) \times \boldsymbol{v}'(t)dtd[u(t)×v(t)]=u′(t)×v(t)+u(t)×v′(t)
- ddtu[φ(t)]=φ′(t)u′[φ(t)]\dfrac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{u} \left[ \varphi(t) \right] = \varphi'(t) \boldsymbol{u}' \left[ \varphi(t) \right]dtdu[φ(t)]=φ′(t)u′[φ(t)]
- 向量值函数导数的几何意义是对应空间曲线的切向量,指向与曲线增长方向相同
2. 空间曲线的切线与法平面
- 空间曲线的切线与法平面
设空间曲线Γ\varGammaΓ的参数方程为{x=φ(t),y=ψ(t),z=ω(t),t∈[α,β].\begin{cases} x = \varphi(t), \\ y = \psi(t), \\ z = \omega(t), \end{cases} \quad t \in [\alpha, \beta]. ⎩⎨⎧x=φ(t),y=ψ(t),z=ω(t),t∈[α,β].这里假定三个函数都在[α,β][\alpha, \beta][α,β]上可导,且三个导数不同时为零
已知点M(x0,y0,z0)M(x_0,y_0,z_0)M(x0,y0,z0),设与点MMM对应的参数为t0t_0t0,曲线Γ\varGammaΓ在该点的切向量为f′(t0)=(φ′(t0),ψ′(t0),ω′(t0))\boldsymbol{f}'(t_0)=(\varphi'(t_0),\psi'(t_0), \omega'(t_0))f′(t0)=(φ′(t0),ψ′(t0),ω′(t0)),从而曲线Γ\varGammaΓ在点MMM处的切线方程为x−x0φ′(t0)=y−y0ψ′(t0)=z−z0ω′(t0).\dfrac{x - x_0}{\varphi'(t_0)} = \dfrac{y - y_0}{\psi'(t_0)} = \dfrac{z - z_0}{\omega'(t_0)}.φ′(t0)x−x0=ψ′(t0)y−y0=ω′(t0)z−z0.通过点MMM且与切线垂直的平面称为曲线Γ\varGammaΓ在点MMM处的法平面,它是通过点M(x0,y0,z0)M(x_0, y_0, z_0)M(x0,y0,z0)且以T=f′(t0)\boldsymbol{T} = \boldsymbol{f}'(t_0)T=f′(t0)为法向量的平面,因此法平面方程为
φ′(t0)(x−x0)+ψ′(t0)(y−y0)+ω′(t0)(z−z0)=0.\varphi'(t_0)(x - x_0) + \psi'(t_0)(y - y_0) + \omega'(t_0)(z - z_0) = 0. φ′(t0)(x−x0)+ψ′(t0)(y−y0)+ω′(t0)(z−z0)=0. - 空间曲线的参数方程(以xxx为参数)
{y=φ(x)z=ψ(x)⇔{x=xy=φ(x)z=ψ(x)\begin{cases} y = \varphi(x) \\ z = \psi(x) \end{cases}\Lrarr\begin{cases} x=x\\ y = \varphi(x) \\ z = \psi(x) \end{cases} {y=φ(x)z=ψ(x)⇔⎩⎨⎧x=xy=φ(x)z=ψ(x) - 空间曲线的一般方程
{F(x,y,z)=0,G(x,y,z)=0\begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0 \end{cases} {F(x,y,z)=0,G(x,y,z)=0设M(x0,y0,z0)M(x_0, y_0, z_0)M(x0,y0,z0)是曲线Γ\varGammaΓ上的一个点,
又设FFF、GGG有对各个变量的连续偏导数,且∂(F,G)∂(y,z)∣(x0,y0,z0)≠0\left. \dfrac{\partial (F, G)}{\partial (y, z)} \right|_{(x_0, y_0, z_0)} \neq 0∂(y,z)∂(F,G)(x0,y0,z0)=0
则方程组在点M(x0,y0,z0)M(x_0, y_0, z_0)M(x0,y0,z0)的某一邻域内确定了一组函数y=φ(x)y = \varphi(x)y=φ(x),z=ψ(x)z = \psi(x)z=ψ(x)
要求曲线Γ\varGammaΓ在点MMM处的切线方程和法平面方程,只要求出φ′(x0)\varphi'(x_0)φ′(x0),ψ′(x0)\psi'(x_0)ψ′(x0),再代入切线方程和法平面方程即可
方程组两边对xxx求全导数可得
{Fx′+Fy′dydx+Fz′dzdx=0,Gx′+Gy′dydx+Gz′dzdx=0.\begin{cases} F'_x + F'_y \dfrac{\mathrm{d}y}{\mathrm{d}x} + F'_z \dfrac{\mathrm{d}z}{\mathrm{d}x} = 0, \\ G'_x + G'_y\dfrac{\mathrm{d}y}{\mathrm{d}x} + G'_z \dfrac{\mathrm{d}z}{\mathrm{d}x} = 0. \end{cases} ⎩⎨⎧Fx′+Fy′dxdy+Fz′dxdz=0,Gx′+Gy′dxdy+Gz′dxdz=0.
φ′(x)=∂(F,G)∂(z,x)∂(F,G)∂(y,z),ψ′(x)=∂(F,G)∂(x,y)∂(F,G)∂(y,z)\varphi'(x)=\dfrac{\dfrac{\partial(F,G)}{\partial(z,x)}}{\dfrac{\partial(F,G)}{\partial(y,z)}},\psi'(x)=\dfrac{\dfrac{\partial(F,G)}{\partial(x,y)}}{\dfrac{\partial(F,G)}{\partial(y,z)}}φ′(x)=∂(y,z)∂(F,G)∂(z,x)∂(F,G),ψ′(x)=∂(y,z)∂(F,G)∂(x,y)∂(F,G)
3. 曲面的切平面与法线
- 曲面的切平面与法线
曲面方程F(x,y,z)=0F(x,y,z)=0F(x,y,z)=0,设M(x0,y0,z0)M(x_0,y_0,z_0)M(x0,y0,z0)是曲面上一点,并设函数F(x,y,z)F(x,y,z)F(x,y,z)的偏导数在该点连续且不同时为零
通过点MMM在曲面上任意引一条曲线,假定曲线的方程为{x=φ(t),y=ψ(t),z=ω(t),t∈[α,β].\begin{cases} x = \varphi(t), \\ y = \psi(t), \\ z = \omega(t), \end{cases} \quad t \in [\alpha, \beta].⎩⎨⎧x=φ(t),y=ψ(t),z=ω(t),t∈[α,β]. t=t0t = t_0t=t0对应于点M(x0,y0,z0)M(x_0, y_0, z_0)M(x0,y0,z0)且φ′(t0)\varphi'(t_0)φ′(t0),ψ′(t0)\psi'(t_0)ψ′(t0),ω′(t0)\omega'(t_0)ω′(t0)不全为零(切线存在)
F(φ(t),ψ(t),ω(t))≡0F(\varphi(t),\psi(t),\omega(t))\equiv 0F(φ(t),ψ(t),ω(t))≡0
因为F(x,y,z)F(x, y, z)F(x,y,z)在点(x0,y0,z0)(x_0, y_0, z_0)(x0,y0,z0)处有连续偏导数,且φ′(t0)\varphi'(t_0)φ′(t0)、ψ′(t0)\psi'(t_0)ψ′(t0)和ω′(t0)\omega'(t_0)ω′(t0)存在,所以这恒等式左边的复合函数在t=t0t = t_0t=t0时有全导数,且这全导数等于零,即
Fx′(x0,y0,z0)φ′(t0)+Fy′(x0,y0,z0)ψ′(t0)+Fz′(x0,y0,z0)ω′(t0)=0F'_x(x_0,y_0,z_0)\varphi'(t_0)+F'_y(x_0,y_0,z_0)\psi'(t_0)+F'_z(x_0,y_0,z_0)\omega'(t_0)=0Fx′(x0,y0,z0)φ′(t0)+Fy′(x0,y0,z0)ψ′(t0)+Fz′(x0,y0,z0)ω′(t0)=0
引入向量n=(Fx′(x0,y0,z0),Fy′(x0,y0,z0),Fz′(x0,y0,z0))\boldsymbol{n}=(F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0))n=(Fx′(x0,y0,z0),Fy′(x0,y0,z0),Fz′(x0,y0,z0))
任意经过MMM的曲线在MMM处的切线向量都与n\boldsymbol{n}n垂直
所以曲面上通过点MMM的一切曲线在点MMM的切线都在同一个平面上
这个平面称为曲面在点MMM的切平面,这切平面的方程是Fx′(x0,y0,z0)(x−x0)+Fy′(x0,y0,z0)(y−y0)+Fz′(x0,y0,z0)(z−z0)=0F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0Fx′(x0,y0,z0)(x−x0)+Fy′(x0,y0,z0)(y−y0)+Fz′(x0,y0,z0)(z−z0)=0通过点M(x0,y0,z0)M(x_0, y_0, z_0)M(x0,y0,z0)且垂直于切平面的直线称为曲面在该点的法线,法线方程是x−x0Fx(x0,y0,z0)=y−y0Fy(x0,y0,z0)=z−z0Fz(x0,y0,z0)\dfrac{x - x_0}{F_x(x_0, y_0, z_0)} = \dfrac{y - y_0}{F_y(x_0, y_0, z_0)} = \dfrac{z - z_0}{F_z(x_0, y_0, z_0)} Fx(x0,y0,z0)x−x0=Fy(x0,y0,z0)y−y0=Fz(x0,y0,z0)z−z0 垂直于曲面上切平面的向量称为曲面的法向量,向量 n=(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))\boldsymbol{n} = \big(F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0)\big)n=(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))就是曲面在点MMM处的一个法向量. - z=f(x,y)z=f(x,y)z=f(x,y)
函数z=f(x,y)z = f(x, y)z=f(x,y)在点(x0,y0)(x_0, y_0)(x0,y0)的全微分,在几何上表示曲面z=f(x,y)z = f(x, y)z=f(x,y)在点(x0,y0,z0)(x_0, y_0, z_0)(x0,y0,z0)处的切平面上点的竖坐标的增量切平面的方程:fx′(x0,y0)(x−x0)+fy′(x0,y0)(y−y0)−(z−z0)=0f'_x(x_0,y_0)(x-x_0)+f'_y(x_0,y_0)(y-y_0)-(z-z_0)=0fx′(x0,y0)(x−x0)+fy′(x0,y0)(y−y0)−(z−z0)=0
下一节:
总目录:【高等数学】 目录