当前位置: 首页 > news >正文

【Python】支持向量机SVM

示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report# 设置中文字体支持
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'KaiTi', 'SimSun']  # 使用系统自带字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
# 1. 生成模拟数据
X, y = make_blobs(n_samples=100, centers=2,random_state=6, cluster_std=1.2)
print("这是X")
print(X)
print("这是y")
print(y)
# 2. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 3. 创建SVM分类器(使用线性核)
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X_train, y_train)# 4. 预测测试集
y_pred = clf.predict(X_test)print(y_pred)
print(y_test)# 5. 评估模型性能
print(f"测试集准确率: {accuracy_score(y_test, y_pred):.2f}")
print("\n分类报告:")
print(classification_report(y_test, y_pred))# 6. 可视化结果
plt.figure(figsize=(10, 6))# 绘制训练数据
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train,cmap='coolwarm', edgecolors='k', label='训练数据')# 绘制测试数据
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test,cmap='coolwarm', marker='s', s=100,edgecolors='k', alpha=0.7, label='测试数据')# 绘制决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()# 创建网格评估模型
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)# 绘制决策边界和间隔
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1],alpha=0.5, linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],s=100, linewidth=1, facecolors='none',edgecolors='k', label='支持向量')plt.title('SVM分类结果可视化')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.legend()
plt.grid(True, linestyle='--', alpha=0.7)
plt.show()

可视化结果:

资料来源于:周志华-机器学习,如有侵权请联系删除

http://www.dtcms.com/a/328068.html

相关文章:

  • Web攻防-业务逻辑篇Fuzz技术数据并发条件竞争JS挖掘参数盲猜Turbo插件SRC
  • c#联合Halcon进行OCR字符识别(含halcon-25.05 百度网盘)
  • 下一代防火墙部署
  • TF-IDF 红楼梦关键词提取
  • 全文深度剖析国产化数据库达梦之备份恢复体系
  • nurbs曲线的matlab
  • RabbitMQ面试精讲 Day 20:RabbitMQ压测与性能评估
  • Hystrix核心内容
  • JUC 面试知识点大纲
  • Notepad++插件开发实战
  • 【从0带做】基于Springboot3+Vue3的校园表白墙系统
  • Java进阶学习之不可变集合
  • 【实时Linux实战系列】基于RFID的实时资产追踪系统
  • 矩形前缀和
  • 【GESP】C++一级知识点之【集成开发环境】
  • 【DL】深层神经网络
  • GraphQL 原理、应用与实践指南
  • MDD-Net:通过相互Transformer进行多模态抑郁症检测
  • Cookies和Sessions
  • 视觉大模型评测数据集
  • [SC]如何使用sc_semaphore实现对共享资源的访问控制
  • LeetCode 2787.将一个数字表示成幂的和的方案数:经典01背包
  • 电机极数2极、4极、6极、8极的区别
  • Vue接口平台小功能——发送报告到飞书
  • 【KO】android 面试 算法
  • 数据分析学习总结之实例练习(双十一淘宝美妆)
  • MySQL 索引算法
  • 基于Hadoop的汽车价格预测分析及评论情感分析可视化系统
  • 基于SpringBoot的旅游网站系统
  • 码上爬第六题【协程+AES解密+请求参数加盐】