当前位置: 首页 > news >正文

[Metrics] RMSE vs ADE

RMSE and ADE sound similar, but they capture slightly different things about trajectory prediction quality.

Let’s break it down in a trajectory context:

1️⃣ RMSE (Root Mean Squared Error)

  • Formula (per trajectory): 在这里插入图片描述mse

  • You square the coordinate errors, average them, then take the square root.

  • Sensitive to large errors because squaring amplifies outliers.

  • Units: same as position (e.g., meters).

  • Tends to penalize big mistakes more heavily — a single bad prediction can inflate RMSE a lot.

2️⃣ ADE (Average Displacement Error)

  • Formula (per trajectory):
    ade

  • You compute the Euclidean (L2) distance at each timestep, then average.

  • Every timestep is weighted equally.

  • More interpretable: “average meters off” per prediction step.

  • Less punishing for occasional big misses — focuses on typical step error.

🚗 Why both are used in trajectory prediction

  • ADE tells you the average positional accuracy — how far off you are most of the time.

  • RMSE tells you about consistency — whether you sometimes make very large mistakes.

  • A model can have low ADE but high RMSE if it’s usually accurate but occasionally very wrong.

  • A model can have low RMSE but high ADE if it’s consistently a bit off, but never drastically.

Quick intuition example:

Prediction error over 3 timestepsADERMSE
[1m, 1m, 1m]1.01.0
[0.5m, 0.5m, 2.5m]1.171.46 (big miss amplified)

So in research & benchmarks, ADE gives the “how far on average” view, while RMSE shows how bad your worst moments hurt your performance.

http://www.dtcms.com/a/328032.html

相关文章:

  • 衡量机器学习模型的指标
  • 【基于Redis的手语翻译序列存储设计】
  • Ansible 自动化介绍
  • 飞算AI:企业智能化转型的新引擎
  • react+Zustand来管理公共数据,类似vue的pinia
  • React 腾讯面试手写题
  • Orange的运维学习日记--40.LNMP-LAMP架构最佳实践
  • 【前端:Html】--3.进阶:图形
  • [激光原理与应用-252]:理论 - 几何光学 - 传统透镜焦距固定,但近年出现的可变形透镜(如液态透镜、弹性膜透镜)可通过改变自身形状动态调整焦距。
  • 虚拟机环境部署Ceph集群的详细指南
  • 「让AI大脑直连Windows桌面」:深度解析Windows-MCP,开启操作系统下一代智能交互
  • Hi3DEval:以分层有效性推进三维(3D)生成评估
  • 【树状数组】Range Update Queries
  • 《Leetcode》-面试题-hot100-栈
  • Apache SeaTunnel 新定位!迈向多模态数据集成的统一工具
  • 亚马逊与UPS规则双调整:从视觉营销革新到物流成本重构的运营战略升级
  • linux下安装php
  • Linux内核编译ARM架构 linux-6.16
  • Node.js 和 npm 的关系详解
  • 能刷java题的网站
  • FPGA即插即用Verilog驱动系列——按键消抖
  • 【JavaEE】多线程之线程安全(中)
  • 第5章 AB实验的随机分流
  • 圆柱电池自动分选机:新能源时代的“质量卫士”
  • 各版本IDEA体验
  • Next.js 中间件:自定义请求处理
  • LeetCode 分割回文串
  • 终端互动媒体业务VS终端小艺业务
  • 本地部署开源媒体中心软件 Kodi 并实现外部访问( Windows 版本)
  • Perl——文件操作