当前位置: 首页 > news >正文

联邦学习之------VT合谋

1、VT合谋攻击(Validation-Trainer Collusion Attack)

定义:在联邦学习中,验证者(Validator)训练者(Trainer)恶意串通,通过共享隐私信息或操纵验证结果,破坏系统的公平性、隐私性或模型性能。

(1)训练者
  • 负责模型的训练过程,通过调整模型参数(如权重和偏置)最小化损失函数。
  • 使用训练数据集(Training Dataset)进行迭代优化。
  • 可能涉及超参数调优(如学习率、批量大小等),但主要通过反向传播算法更新模型。
(2)验证者
  • 负责评估模型在训练过程中的泛化能力,防止过拟合或欠拟合。
  • 使用验证数据集(Validation Dataset)评估模型性能,不参与参数更新。
  • 监控指标(如准确率、F1分数)并决定是否提前停止训练或调整超参数。
(3)验证者的具体职责
  1. 模型性能评估
    验证者通过独立的数据集(验证集)评估模型表现,确保其未过度依赖训练数据中的噪声或特定模式。常用指标包括分类准确率、均方误差(MSE)等。

  2. 超参数调优
    验证阶段用于比较不同超参数组合的效果(如不同网络层数、激活函数),选择最优配置。例如,通过交叉验证(Cross-Validation)划分多组验证集。

  3. 过拟合检测
    若训练误差持续下降而验证误差上升,可能出现过拟合。验证者需触发早停(Early Stopping)或调整正则化策略(如L2正则化)。

  4. 模型选择
    在多个候选模型(如不同架构的神经网络)中,验证者通过验证集性能选择最佳模型,最终提交至测试集评估。

(4)实际应用中的流程差异
  • 训练阶段:训练者仅接触训练数据,通过优化算法(如SGD、Adam)更新模型。

  • 验证阶段:验证者使用未见过的验证数据评估模型,指导后续改进方向。

2、攻击目的

  1. 窃取隐私数据:验证者与训练者合谋,通过模型更新(梯度)反推出其他参与者的原始数据(如成员推断攻击)。

  2. 操纵模型结果:恶意训练者提交伪造的模型更新,验证者故意放行,导致模型偏向特定目标(如广告投放欺诈)。

  3. 逃避贡献评估:合谋者互相掩盖低质量贡献,骗取奖励(如区块链联邦学习中的代币激励)。


3、针对联邦学习的阶段

VT合谋主要影响以下两个阶段:

阶段攻击方式
模型更新提交阶段训练者提交恶意梯度,验证者故意不检测异常,使攻击更新被聚合到全局模型中。
模型验证阶段验证者为合谋训练者提供虚假验证结果(如高评分),掩盖其恶意行为。

4、案例

  1. 梯度泄露攻击:合谋的验证者将其他训练者的梯度信息透露给恶意训练者,后者通过梯度反演恢复敏感数据。

  2. Sybil攻击变种:攻击者伪装成多个训练者(Sybil身份),并与验证者合谋,控制多数投票权操纵模型更新。


5、防御措施

  1. 动态群签名:匿名化训练者身份,防止验证者定向勾结特定成员(但需保留追溯能力)。

  2. 去中心化验证:通过区块链智能合约或多方计算(MPC)自动验证模型更新,减少人为干预。

  3. 贡献审计机制:记录训练者的历史行为,对异常贡献(如突然的高梯度幅值)进行惩罚。

  4. 差分隐私(DP):在梯度中添加噪声,降低合谋者从模型更新中推断隐私的能力。

http://www.dtcms.com/a/324454.html

相关文章:

  • Pico+unity VR入门开发超详细笔记2025
  • 人形机器人强化学习入门实践1part
  • stm32没有CMSIS文件
  • Redis如何实现一个分布式锁?
  • 第4章 程序段的反复执行3 do-whiile语句P139练习(题及答案)
  • [Linux]学习笔记系列 -- [arm][lib]
  • C++的嵌套结构体
  • Deep Learning MNIST手写数字识别 Mac
  • 【从源码角度深度理解 CPython 的垃圾回收机制】:第2课循环引用:标记清除-分代回收
  • 7.企业级AD活动目录的备份与恢复策略
  • 【celeba】-数据集的介绍
  • 驱动电路设计
  • Ollama+Deepseek+Docker+RAGFlow打造自己的私人AI知识库
  • 【软件测试】性能测试 —— 工具篇 JMeter 介绍与使用
  • AI质检数据准备利器:基于Qt/QML 5.14的图像批量裁剪工具开发实战
  • 升级 JDK 17 碰到的请求 https 问题
  • 从0开始的中后台管理系统-5(userList页面功能实现)
  • 自测电脑有没有木马
  • 深度学习周报(8.4~8.10)
  • 使用binutils工具解析目标文件符号表(叁)
  • Datawhale AI夏令营 多模态RAG环境问题
  • 海关 瑞数 失信企业 逆向 分析 后缀 rs
  • es查询小结
  • CSS优先级、HTTP响应状态码
  • BGP综合大实验
  • 人工智能-python-机器学习-模型选择与调优实战指南:从交叉验证到朴素贝叶斯分类
  • 为wordpress顶部header.php文件中调用不同的标题和摘要
  • 学习中的杂项知识
  • 在Word和WPS文字一页中实现一栏与多栏混排
  • 打靶日常-upload-labs(21关)