当前位置: 首页 > news >正文

通过 Docker 运行 Prometheus 入门

Prometheus 流程拓扑

Promethues 组件

  • prometheus server
  • exporter
  • alertmanager

环境准备

  • Docker

拉取镜像备用

# https://hub.docker.com/r/prom/prometheus
docker pull m.daocloud.io/docker.io/prom/prometheus:main# https://hub.docker.com/r/prom/node-exporter
docker pull m.daocloud.io/docker.io/prom/node-exporter:master# https://hub.docker.com/r/prom/alertmanager
docker pull m.daocloud.io/docker.io/prom/alertmanager:main
  • 接收 Prometheus Alertmanager Webhook 告警的 API

本文使用 php 接收

$ cat index.php
<?php$a = $_GET;
$b = $_POST;
$c = file_get_contents('php://input');file_put_contents('debug.log', print_r([date('Y-m-d H:i:s', time()), $a, $b, $c], true), FILE_APPEND);print_r([$a, $b, $c]);# 在 9977 端口监听 HTTP 请求,用于告警的 webhook
$ php -S 0.0.0.0:9977

代码示例

目录结构

tree .
├── alertmanager # Alertmanager 相关配置及数据目录
│   ├── config
│   │   └── alertmanager.yml # 配置文件
│   └── data # 数据目录
├── prometheus # Prometheus 相关配置及数据目录
│   ├── config
│   │   ├── alert_rules.yml # 告警配置
│   │   └── prometheus.yml # prometheus 配置文件
│   └── data # 数据目录
├── run-alertmanager.sh # 启动 Alertmanager 脚本
├── run-node-exporter.sh # 启动 Node-Exporter 脚本
└── run-prometheus.sh # 启动 Prometheus Server 脚本

脚本内容

  • alertmanager/config/alertmanager.yml
route:group_by: ['alertname']group_wait: 30sgroup_interval: 5mrepeat_interval: 1hreceiver: 'web.hook'
receivers:- name: 'web.hook'webhook_configs:# webhook 的通知地址- url: 'http://192.168.1.8:9977/'
inhibit_rules:- source_match:severity: 'critical'target_match:severity: 'warning'equal: ['alertname', 'dev', 'instance']
  • prometheus/config/prometheus.yml
# my global config
global:scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.# scrape_timeout is set to the global default (10s).# Alertmanager configuration
alerting:alertmanagers:- static_configs:- targets:# alertmanager 的服务地址- 192.168.1.8:9093# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:# - "first_rules.yml"# - "second_rules.yml"- "alert_rules.yml"# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.- job_name: "prometheus"# metrics_path defaults to '/metrics'# scheme defaults to 'http'.static_configs:- targets: ["localhost:9090"]# The label name is added as a label `label_name=<label_value>` to any timeseries scraped from this config.labels:app: "prometheus"- job_name: "my_node_exporter"# metrics_path defaults to '/metrics'# scheme defaults to 'http'.static_configs:# node_exporter 地址- targets: ["192.168.1.8:9100"]# The label name is added as a label `label_name=<label_value>` to any timeseries scraped from this config.labels:app: "another_node_exporter"
  • prometheus/config/alert_rules.yml
groups:- name: examplerules:- alert: HighCPUUsage# 当 CPU 使用率 >= 85% 持续时间 >= 2 分钟以上时进行告警expr: sum(rate(node_cpu_seconds_total{mode=~"user|system"}[5m]))/sum(rate(node_cpu_seconds_total[5m])) >= 0.8for: 2mlabels:severity: warningannotations:summary: "CPU usage on {{ $labels.instance }} is high"
  • run-alertmanager.sh
#!/bin/shCONFIG_PATH=$PWD/alertmanager/config
DATA_PATH=$PWD/alertmanager/data
IMAGE=m.daocloud.io/docker.io/prom/alertmanager:maindocker run --rm --name alertmanager -d \-v $CONFIG_PATH:/etc/alertmanager \-v $DATA_PATH:/alertmanager \-p 9093:9093 \$IMAGE
  • run-node-exporter.sh
#!/bin/shIMAGE=m.daocloud.io/docker.io/prom/node-exporter:master
docker run -d \-p 9100:9100 \$IMAGE
  • run-prometheus.sh
#!/bin/sh
IMAGE=m.daocloud.io/docker.io/prom/prometheus:main
CONFIG_PATH=$PWD/prometheus/config
DATA_PATH=$PWD/prometheus/data# 注:--web.enable-lifecycle 启用热重载
# 配置热重载方式:curl -X POST http://192.168.1.8:9090/-/reload
docker run --rm --name prometheus -d \-v $CONFIG_PATH:/etc/prometheus \-v $DATA_PATH:/prometheus \-p 127.0.0.1:9090:9090 \$IMAGE \--config.file=/etc/prometheus/prometheus.yml \--storage.tsdb.path=/prometheus \--web.enable-lifecycle

开始运行

(1)启动组件

# 启动 Alertmanager
sh run-alertmanager.sh# 启动 Exporter
sh run-node-exporter.sh# 启动 Prometheus Server
sh run-prometheus.sh# 查看容器状态
docker ps
CONTAINER ID   IMAGE                                               COMMAND                   CREATED          STATUS          PORTS                                         NAMES
f8eafe761ada   m.daocloud.io/docker.io/prom/alertmanager:main      "/bin/alertmanager -…"   37 minutes ago   Up 37 minutes   0.0.0.0:9093->9093/tcp, [::]:9093->9093/tcp   alertmanager
e9059e4b093e   m.daocloud.io/docker.io/prom/prometheus:main        "/bin/prometheus --c…"   39 minutes ago   Up 39 minutes   127.0.0.1:9090->9090/tcp                      prometheus
b2d29afc5f8d   m.daocloud.io/docker.io/prom/node-exporter:master   "/bin/node_exporter …"   2 hours ago      Up 2 hours      0.0.0.0:9100->9100/tcp, [::]:9100->9100/tcp   pedantic_edison

(2)进入 node-exporter 通过命令 yes > /dev/null & 使 CPU 负载达到告警阀值

docker exec -it b2d29afc5f8d /bin/sh
b2d29afc5f8d $ yes > /dev/null &
b2d29afc5f8d $ yes > /dev/null &
b2d29afc5f8d $ yes > /dev/null &
b2d29afc5f8d $ yes > /dev/null &
... 
b2d29afc5f8d $ yes > /dev/null &
b2d29afc5f8d $ yes > /dev/null &

(3)然后访问 192.168.1.8:9090 查看 CPU 使用率变化情况
查询语句 sum(rate(node_cpu_seconds_total{mode=~"user|system"}[5m])) / sum(rate(node_cpu_seconds_total[5m]))
prometheus 查看 CPU 负载
(4)点击 Alerts 查看是否触发告警
prometheus alerts
(5)访问 192.168.1.8:9093 查看 Alertmanager 是否触发告警 webhook
alertmanager
(6)在 webhook 接收端查看数据情况

cat debug.log(debug.log 由上述的 index.php 生成)
webhook 收到的报文

(7)其它

  • 可根据接收到报文进行自定义处理(如通知到钉钉、企业微信等)
  • Alertmanager 可以配置邮件告警,可参考官方文档
http://www.dtcms.com/a/322659.html

相关文章:

  • 开源智能手机安全相机推荐:Snap Safe
  • 数据结构(9)——排序
  • 【C++上岸】C++常见面试题目--数据结构篇(第十五期)
  • 搜索算法经典案例
  • SpringSecurity过滤器链全解析
  • navicat 连接docker容器里面mysql服务失败解决
  • 传输线的瞬时阻抗
  • UE破碎Chaos分配模型内部面材质
  • Jmeter性能测试之安装及启动Jmeter
  • Nginx 安全加固与服务监控体系
  • 如何无损压缩图片至原大小的10%?
  • ComfyUI——舒服地让大模型为我所用
  • 常用性能测试工具及使用方法介绍
  • 【内核配置】CONFIG_DEBUG_USER 配置项原理分析
  • 线程安全的单例模式,STL和智能指针
  • golang的二维数组
  • 直接插入排序算法:可视化讲解与C语言实现
  • 【R语言】单细胞数据整合质量评估(3)
  • Matlab 基于BP神经网络结合Bagging(BP-Bagging)集成算法的单变量时序预测 (单输入单输出)
  • Linux运维新手的修炼手扎之第26天
  • Effective C++ 条款31: 将文件间的编译依存关系降至最低
  • 飞算JavaAI:人工智能与Java的创新融合与应用前景
  • 5、docker镜像管理命令
  • Qt/C++开发监控GB28181系统/实时监测设备在线离线/视频预览自动重连/重新点播取流/低延迟
  • MySQL 复制表详细说明
  • 某金融APP防护检测分析
  • PromptPilot打造高效AI提示词
  • 智慧农业-无人机视角庄稼倒伏农作物倒伏检测数据集VOC+YOLO格式541张1类别
  • 计算机视觉CS231n学习(6)
  • 跨境电商系统开发:ZKmall开源商城的技术选型与代码规范实践