当前位置: 首页 > news >正文

快手AI团队开源 KAT (Kwaipilot-AutoThink) 思考模型

新闻

  • Kwaipilot-AutoThink 在专为防止数据泄露设计的挑战性基准测试 LiveCodeBench Pro 中位列所有开源模型榜首,甚至超越了 Seed 和 o3-mini 等强大的专有系统。

简介

KAT(快想-自动思考) 是一个开源大语言模型,通过学会判断何时生成显式推理链与何时直接回答,有效缓解了过度思考问题。

在这里插入图片描述

其发展遵循简洁的两阶段训练流程:

StageCore IdeaKey TechniquesOutcome
1. Pre-trainingInject knowledge while separating “reasoning” from “direct answering”. Dual-regime data
Think-off queries labeled via a custom tagging system.
Think-on queries generated by a multi-agent solver.

Knowledge Distillation + Multi-Token Prediction for fine-grained utility.
Base model attains strong factual and reasoning skills without full-scale pre-training costs.
2. Post-trainingMake reasoning optional and efficient. Cold-start AutoThink — majority vote sets the initial thinking mode.
Step-SRPO — intermediate supervision rewards correct mode selection and answer accuracy under that mode.
Model triggers CoT only when beneficial, reducing token use and speeding inference.

在这里插入图片描述


数据格式

KAT以结构化模板生成响应,使推理路径清晰且机器可解析。
支持两种模式:

在这里插入图片描述

特殊标记

标记描述
<judge>分析输入以判断是否需要显式推理过程。
<think_on> / <think_off>表示推理功能是否启用(“on”)或跳过(“off”)。
<think>当选择think_on时,标记思维链片段的开始。
<answer>标记最终面向用户答案的开始。

🔧 Quick Start

from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name = "Kwaipilot/KAT-V1-40B"# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype="auto",device_map="auto"
)# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)# conduct text completion
generated_ids = model.generate(**model_inputs,max_new_tokens=65536,temperature=0.6,top_p=0.95,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
print("prompt:\n", prompt)
print("content:\n", content)
"""
prompt:
Give me a short introduction to large language model.
content:
<judge>
The user's request is to provide a concise factual introduction to large language models, which involves retrieving and summarizing basic information. This task is straightforward as it only requires recalling and presenting well-known details without deeper analysis. No complex reasoning is needed here—just a simple explanation will suffice.
</judge><think_off>
<answer>
A **Large Language Model (LLM)** is an advanced AI system trained on vast amounts of text data to understand, generate, and process human-like language. Here’s a concise introduction:### Key Points:
1. **Training**: Trained on diverse text sources (books, websites, etc.) using deep learning.
2. **Capabilities**: - Answer questions, generate text, summarize content, translate languages.- Understand context, sentiment, and nuances in language.
3. **Architecture**: Often based on **transformer models** (e.g., BERT, GPT, LLaMA).
4. **Scale**: Billions of parameters, requiring massive computational resources.
5. **Applications**: Chatbots, content creation, coding assistance, research, and more.### Examples:
- **OpenAI’s GPT-4**: Powers ChatGPT.
- **Google’s Gemini**: Used in Bard.
- **Meta’s LLaMA**: Open-source alternative.### Challenges:
- **Bias**: Can reflect biases in training data.
- **Accuracy**: May hallucinate "facts" not grounded in reality.
- **Ethics**: Raises concerns about misinformation and job displacement.LLMs represent a leap forward in natural language processing, enabling machines to interact with humans in increasingly sophisticated ways. 🌐🤖
</answer>
"""

未来发布计划

展望未来,我们将发表一篇配套论文,完整记录AutoThink训练框架,内容包括:

  • 冷启动初始化流程
  • 强化学习(Step-SRPO)策略
  • 数据筛选与奖励机制设计细节

同时,我们将开源以下资源:

  • 训练资源——精选的双模式数据集和强化学习代码库
  • 模型系列——包含15亿、70亿和130亿参数的模型检查点,均采用AutoThink门控机制训练
http://www.dtcms.com/a/317869.html

相关文章:

  • 【ROS1】13-元功能包
  • electron:vue3+vite打包案例
  • 从零搭建React框架--第一章:create-react-app、antd、less
  • LAS平台Vibe Data Processing:AI驱动的数据处理新范式
  • Chrontel昆泰-【CH7036A-BF】CH7036 LVDS to HDMI/VGA/LVDS Converter
  • 基于MATLAB实现的具有螺旋相位板的4F系统用于图像边缘增强的仿真
  • 软件定义汽车 --- 电子电气架构的驱动
  • 在ubuntu上使用jenkins部署.net8程序
  • 【概念学习】早期神经网络
  • Redis 缓存三大核心问题:穿透、击穿与雪崩的深度解析
  • [AI 生成] hive 面试题
  • Document Object Model
  • 机器学习-LinearRegression
  • harbor仓库搭建(配置https)
  • MCU程序的编译与链接及格式转换
  • 防御保护防火墙简单实验报告
  • Git 乱码文件处理全流程指南:从识别到彻底清除
  • MySQL的约束条件:
  • 【Linux】调试器gdb/cgdb的使用
  • 生成式 AI 重塑自动驾驶仿真:4D 场景生成技术的突破与实践
  • vector使用模拟实现
  • 牛客AI简历筛选:破解秋招效率难题
  • 向量数据库基础入门:RAG 与向量检索基础认知构建
  • 《C语言程序设计》笔记p9
  • LLM——浅谈 LangGraph 中断式工作流:构建一个可交互的问答流程
  • 4、docker数据卷管理命令 | docker volume
  • 【关于Java的对象】
  • vue3 el-dialog自定义实现拖拽、限制视口范围增加了拖拽位置持久化的功能
  • 实战教程:从“对象文件为空“到仓库重生——修复 Git 仓库损坏全记录
  • 大数据存储域——Hive数据仓库工具