day39 力扣198.打家劫舍 力扣213.打家劫舍II 力扣337.打家劫舍 III
打家劫舍
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1] 输出:4 解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。示例 2:
输入:[2,7,9,3,1] 输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。偷窃到的最高金额 = 2 + 9 + 1 = 12 。提示:
1 <= nums.length <= 100
0 <= nums[i] <= 400
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
确定递推公式:
如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,
然后二者取最大值。
初始化:
从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]
从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1])。
顺序就是从前往后。
class Solution {
public:int rob(vector<int>& nums) {if(nums.size()==1)return nums[0];vector<int> dp(nums.size(),0);dp[0] = nums[0];dp[1] = max(nums[0],nums[1]);for(int i = 2;i<nums.size();i++){dp[i] = max(dp[i-1],dp[i-2]+nums[i]);}return dp[nums.size()-1];}
};
考虑nums只有一个元素的情况。
打家劫舍II
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2] 输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。示例 2:
输入:nums = [1,2,3,1] 输出:4 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。示例 3:
输入:nums = [1,2,3] 输出:3提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
成环的话主要有如下三种情况:
- 情况一:考虑不包含首尾元素
- 情况二:考虑包含首元素,不包含尾元素
- 情况三:考虑包含尾元素,不包含首元素
而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。
class Solution {
public:int rob(vector<int>& nums) {if(nums.size()== 0) return 0;if(nums.size()==1) return nums[0];int result1 = robRange(nums,0,nums.size()-2);int result2 = robRange(nums,1,nums.size()-1);return max(result1,result2);}int robRange(vector<int>& nums,int start,int end){if(end-start==0) return nums[start];vector<int> dp(nums.size(),0);dp[start] = nums[start];dp[start+1] = max(nums[start],nums[start+1]);for(int i = start+2;i<=end;i++){dp[i] = max(dp[i-1],dp[i-2]+nums[i]);}return dp[end];}
};
注意dp数组的初始化范围。
打家劫舍 III
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为
root
。除了
root
之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。给定二叉树的
root
。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。示例 1:
输入: root = [3,2,3,null,3,null,1] 输出: 7 解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7示例 2:
输入: root = [3,4,5,1,3,null,1] 输出: 9 解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9提示:
- 树的节点数在
[1, 104]
范围内0 <= Node.val <= 104
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。
所以本题dp数组就是一个长度为2的数组!
确定终止条件:
在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回(相当于初始化)
确定遍历顺序:
首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。
通过递归左节点,得到左节点偷与不偷的金钱。
通过递归右节点,得到右节点偷与不偷的金钱。
确定单层递归的逻辑
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)
如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int rob(TreeNode* root) {vector<int> result = robTree(root);return max(result[0],result[1]);}vector<int> robTree(TreeNode* cur){if(cur == nullptr) return vector<int> {0,0};vector<int> left = robTree(cur->left);vector<int> right = robTree(cur->right);int val0 = max(left[0],left[1]) + max(right[0],right[1]);int val1 = cur->val + left[0] + right[0];return {val0,val1};}
};