最优估计准则与方法(6)递推最小二乘估计(RLS)_学习笔记
前言
最优估计理论中研究的最小二乘估计(LS)为线性最小二乘估计(LLS),包括古典最小二乘估计(CLS)、加权最小二乘估计(WLS)[1]和递推最小二乘估计(RLS)。本文将详细介绍递推最小二乘估计(RLS)。
线性参数估计问题描述
这里重复文章[1]的相关描述。设XXX为nnn维未知参数向量,ZkZ_{k}Zk为kkk维观测向量,表示经过kkk组实验观测得到的观测值向量,其中元素ziz_{i}zi表示第i次观测实验得到的观测值,显然其是1维观测标量,VkV_{k}Vk为kkk维观测噪声向量,其中元素viv_{i}vi表示第i次观测实验的观测噪声,显然其是1维噪声标量。一般情况下k>nk > nk>n且希望kkk比nnn大得多。单次观测值为多维的情况将在后文讨论。观测实验依据的自变量为θ\thetaθ,则将观测量ziz_{i}zi表示为关于θ\thetaθ的未知函数f(θ,X)f(\theta,X)f(θ,X):
zi=f(θ,X)=∑j=1n[xjhi,j(θ)]+vi=x1hi,1(θ)+x2hi,2(θ)+⋯+xnhi,n(θ)+vi\begin{align*} z_{i} &= f(\theta,X) \\ &= \sum_{j=1}^{n} \left [ x_{j}h_{i,j}(\theta) \right ]+ v_{i} \\ &= x_{1}h_{i,1}(\theta)+ x_{2}h_{i,2}(\theta) + \cdots + x_{n}h_{i,n}(\theta) + v_{i} \tag{1} \\ \end{align*} zi=f(θ,X)=j=1∑n[xjhi,j(θ)]+vi=x1hi,1(θ)+x2hi,2(θ)+⋯+xnhi,n(θ)+vi(1)
其中
X=[x1x2⋮xn]Zk=[z1z2⋮zk]Vk=[v1v2⋮vk]\begin{align*} X = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} Z_{k} = \begin{bmatrix} z_{1} \\ z_{2} \\ \vdots \\ z_{k} \end{bmatrix} V_{k} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{k} \end{bmatrix} \end{align*} X=x1x2⋮xnZk=z1z2⋮zkVk=v1v2⋮vk
式(1)中hi,j(θ)h_{i,j}(\theta)hi,j(θ)表示第iii次观测第jjj个基函数,常用为多项式、三角函数或自然指数函数形式:
hi,j(θ)=θj−1hi,j(θ)=sin(jθ)hi,j(θ)=exp(λjθ)\begin{align*} h_{i,j}(\theta) &= \theta ^{j-1} \\ h_{i,j}(\theta) &= sin(j\theta) \\ h_{i,j}(\theta) &= exp(\lambda_{j} \theta) \\ \end{align*} hi,j(θ)hi,j(θ)hi,j(θ)=θj−1=sin(jθ)=exp(λjθ)
其中,λj\lambda_{j}λj为自然数指数参数。
当观测实验进行,上述基函数均可根据θ\thetaθ求得。令hi=[hi,1(θ)hi,2(θ)⋯hi,n(θ)]h_{i} = \begin{bmatrix} h_{i,1}(\theta) & h_{i,2}(\theta) & \cdots & h_{i,n}(\theta) \\ \end{bmatrix}hi=[hi,1(θ)hi,2(θ)⋯hi,n(θ)]且为已知,其为nnn维常向量,将式(1)改写为:
Zk=HkX+Vk\begin{align*} Z_{k}= H_{k}X+ V_{k} \tag{2} \\ \end{align*} Zk=HkX+Vk(2)
其中,HHH为参数向量XXX到观测向量ZZZ的k×nk \times nk×n维转移矩阵:
H=[h1h2⋮hk]=[h1,1(θ)h1,2(θ)⋯h1,n(θ)h2,1(θ)h2,2(θ)⋯h2,n(θ)⋮⋮⋱⋮hk,1(θ)hk,2(θ)⋯hk,n(θ)]\begin{align*} H = \begin{bmatrix} h_{1} \\ h_{2} \\ \vdots \\ h_{k} \end{bmatrix} = \begin{bmatrix} h_{1,1}(\theta) & h_{1,2}(\theta) & \cdots & h_{1,n}(\theta) \\ h_{2,1}(\theta) & h_{2,2}(\theta) & \cdots & h_{2,n}(\theta) \\ \vdots & \vdots & \ddots & \vdots\\ h_{k,1}(\theta) & h_{k,2}(\theta) & \cdots & h_{k,n}(\theta) \end{bmatrix} \\ \end{align*} H=h1h2⋮hk=h1,1(θ)h2,1(θ)⋮hk,1(θ)h1,2(θ)h2,2(θ)⋮hk,2(θ)⋯⋯⋱⋯h1,n(θ)h2,n(θ)⋮hk,n(θ)
显然,观测向量ZZZ与被估参数向量XXX存在线性关系,依据最优准则求对XXX的估计值X^\hat{X}X^是一个线性参数估计问题,自然对应线性最小二乘估计(LLS)。
这里讨论下超定方程组的矛盾:当k=nk = nk=n时,线性方程组有唯一精确解,但当k>nk > nk>n,线性方程数大于未知被估参数向量的维度,线性方程组变成线性超定方程组,其解不唯一。最小二乘法的思想是需求统计意义上的近似解,使线性超定方程组中各方程能得到近似相等。
递推最小二乘估计(Recursive Least Squares Estimation, RLSE)
递推最小二乘估计(RLS) 没有在估计准则方面有新的提法,而是用新的观测信息修正现有估计值计算出新的估计值,实现最小二乘法的递推更新与校正。相比最小二乘估计和加权最小二乘估计的批量处理方法,借助递推滤波的思想,可以在计算空间上有显著的提高[2]。
以加权最小二乘估计中的最优加权估计为例,阐述递推实现过程。
估计准则为:加权残差平方和最小。根据式(3)代价函数改写如下:
J=Ek^TWEk^=(Zk−HkXk^)TWk(Zk−HXk^)=∑i=1kwie^i2=∑i=1kwi(zi−hiXk^)2=min\begin{align*} J = \hat{E_{k}}^{T}W\hat{E_{k}} &= (Z_{k}-H_{k}\hat{X_{k}})^{T}W_{k}(Z_{k}-H\hat{X_{k}}) = \sum_{i=1}^{k} w_{i}\hat{e}_{i}^{2} = \sum_{i=1}^{k}w_{i}(z_{i}-h_{i}\hat{X_{k}})^{2}=min \tag{3} \\ \end{align*} J=Ek^TWEk^=(Zk−HkXk^)TWk(Zk−HXk^)=i=1∑kwie^i2=i=1∑kwi(zi−hiXk^)2=min(3)
其中,e^i\hat{e}_{i}e^i为第iii次观测的残差(Residual Error),E^k\hat{E}_{k}E^k为kkk维残差向量有:
e^i=zi−hiX^kE^k=Zk−HkX^=[e^1e^2⋮e^k]\begin{align*} \hat{e}_{i} &= z_{i}-h_{i}\hat{X}_{k} \\ \hat{E}_{k} &= Z_{k}-H_{k}\hat{X} = \begin{bmatrix} \hat{e}_{1} \\ \hat{e}_{2} \\ \vdots \\ \hat{e}_{k} \end{bmatrix} \\ \end{align*} e^iE^k=zi−hiX^k=Zk−HkX^=e^1e^2⋮e^k
观测噪声向量VVV为白噪声,即E[V]=0E[V] = 0E[V]=0且方差矩阵为RkR_{k}Rk:
Rk=[σ120⋯00σ22⋯0⋮⋮⋱⋮00⋯σk2]\begin{align*} R_{k} &= \begin{bmatrix} \sigma_{1}^{2} & 0& \cdots& 0\\ 0& \sigma_{2}^{2} & \cdots& 0 \\ \vdots& \vdots& \ddots & \vdots\\ 0& 0& \cdots& \sigma_{k}^{2} \end{bmatrix} \\ \end{align*} Rk=σ120⋮00σ22⋮0⋯⋯⋱⋯00⋮σk2
WkW_{k}Wk为k×kk\times kk×k阶对称正定加权矩阵,取Wk=R−1W_{k}=R^{-1}Wk=R−1时,加权最小二乘估计为最优加权最小二乘估计,也称马尔可夫(Markov)估计,是没有初始值条件下的线性最小方差无偏估计[1]。
Wk=[w10⋯00w2⋯0⋮⋮⋱⋮00⋯wk]=[1σ120⋯001σ22⋯0⋮⋮⋱⋮00⋯1σn2]\begin{align*} W_{k} &= \begin{bmatrix} w_{1} & 0& \cdots& 0\\ 0& w_{2} & \cdots& 0 \\ \vdots& \vdots& \ddots & \vdots\\ 0& 0& \cdots& w_{k} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma_{1}^{2}} & 0& \cdots& 0\\ 0& \frac{1}{\sigma_{2}^{2}} & \cdots& 0 \\ \vdots& \vdots& \ddots & \vdots\\ 0& 0& \cdots& \frac{1}{\sigma_{n}^{2}} \end{bmatrix} \end{align*} Wk=w10⋮00w2⋮0⋯⋯⋱⋯00⋮wk=σ1210⋮00σ221⋮0⋯⋯⋱⋯00⋮σn21
其估计向量X^k\hat{X}_{k}X^k为:
X^k=(HkTWkHk)−1HkTWkZk=(HkTRk−1Hk)−1HkTRk−1Zk\begin{align*} \hat{X}_{k} &= (H_{k}^{T}W_{k}H_{k})^{-1}H_{k}^{T}W_{k}Z_{k} \tag{4} \\ &= (H_{k}^{T}R_{k}^{-1}H_{k})^{-1}H_{k}^{T}R_{k}^{-1}Z_{k} \tag{5} \\ \end{align*} X^k=(HkTWkHk)−1HkTWkZk=(HkTRk−1Hk)−1HkTRk−1Zk(4)(5)
在处理kkk个观测值之后,又得到第k+1k+1k+1次观测值zk+1z_{k+1}zk+1:
zk+1=∑j=1n[xjhk+1,j(θ)]+vk+1=x1hk+1,1(θ)+x2hk+1,2(θ)+⋯+xnhk+1,n(θ)+vk+1=hk+1X+vk+1\begin{align*} z_{k+1} &= \sum_{j=1}^{n} \left [ x_{j}h_{k+1,j}(\theta) \right ]+ v_{k+1} \\ &= x_{1}h_{k+1,1}(\theta)+ x_{2}h_{k+1,2}(\theta) + \cdots + x_{n}h_{k+1,n}(\theta) + v_{k+1} \\ &= h_{k+1}X+ v_{k+1} \tag{6} \\ \end{align*} zk+1=j=1∑n[xjhk+1,j(θ)]+vk+1=x1hk+1,1(θ)+x2hk+1,2(θ)+⋯+xnhk+1,n(θ)+vk+1=hk+1X+vk+1(6)
其中,令hk+1=[hk+1,1(θ)hk+1,2(θ)⋯hk+1,n(θ)]h_{k+1} = \begin{bmatrix} h_{k+1,1}(\theta) & h_{k+1,2}(\theta) & \cdots & h_{k+1,n}(\theta) \\ \end{bmatrix}hk+1=[hk+1,1(θ)hk+1,2(θ)⋯hk+1,n(θ)]
将式(2)与(5)合并,得
Zk+1=Hk+1X+Vk+1\begin{align*} Z_{k+1}= H_{k+1}X+ V_{k+1} \tag{7} \\ \end{align*} Zk+1=Hk+1X+Vk+1(7)
其中
Zk+1=[Zkzk+1]Hk+1=[Hkhk+1]Vk+1=[Vkvk+1]\begin{align*} Z_{k+1} &= \begin{bmatrix} Z_{k} \\ z_{k+1} \end{bmatrix} H_{k+1}= \begin{bmatrix} H _{k} \\ h_{k+1} \end{bmatrix} V_{k+1}= \begin{bmatrix} V _{k} \\ v_{k+1} \end{bmatrix} \end{align*} Zk+1=[Zkzk+1]Hk+1=[Hkhk+1]Vk+1=[Vkvk+1]
由于加权矩阵Wk+1W_{k+1}Wk+1对称正定矩阵,则
Wk+1=[Wk00wk+1]\begin{align*} W_{k+1} &= \begin{bmatrix} W_{k}& 0 \\ 0& w_{k+1} \\ \end{bmatrix} \tag{8} \\ \end{align*} Wk+1=[Wk00wk+1](8)
得到估计向量X^\hat{X}X^为:
X^k+1=(Hk+1TWk+1Hk+1)−1Hk+1TWk+1Zk+1\begin{align*} \hat{X}_{k+1} &= (H_{k+1}^{T}W_{k+1}H_{k+1})^{-1}H_{k+1}^{T}W_{k+1}Z_{k+1} \tag{9} \\ \end{align*} X^k+1=(Hk+1TWk+1Hk+1)−1Hk+1TWk+1Zk+1(9)
(Hk+1TWk+1Hk+1)−1=[[Hkhk+1]T[Wk00wk+1][Hkhk+1]]−1=(HkTWkHk+hk+1Twk+1hk+1)−1\begin{align*} (H_{k+1}^{T}W_{k+1}H_{k+1})^{-1} &= \left [ \begin{bmatrix} H_{k} &h_{k+1} \end{bmatrix}^{T} \begin{bmatrix} W_{k}& 0 \\ 0& w_{k+1} \\ \end{bmatrix} \begin{bmatrix} H_{k} &h_{k+1} \end{bmatrix} \right ]^{-1} \\ &= \left ( H_{k}^{T}W_{k}H_{k} + h_{k+1}^{T}w_{k+1}h_{k+1} \right )^{-1} \tag{10} \end{align*} (Hk+1TWk+1Hk+1)−1=[[Hkhk+1]T[Wk00wk+1][Hkhk+1]]−1=(HkTWkHk+hk+1Twk+1hk+1)−1(10)
令
Pk=(HkTWkHk)−1Pk−1=HkTWkHkPk+1=(Hk+1TWk+1Hk+1)−1=(HkTWkHk+hk+1Twk+1hk+1)−1=(Pk−1+hk+1Twk+1hk+1)−1Pk+1−1=Pk−1+hk+1Twk+1hk+1\begin{align*} P_{k} &= (H_{k}^{T}W_{k}H_{k})^{-1} \tag{11} \\ P_{k}^{-1} &= H_{k}^{T}W_{k}H_{k} \tag{12} \\ P_{k+1} &= (H_{k+1}^{T}W_{k+1}H_{k+1})^{-1} \\ &= ( H_{k}^{T}W_{k}H_{k} + h_{k+1}^{T}w_{k+1}h_{k+1} )^{-1} \\ &= (P_{k}^{-1} + h_{k+1}^{T}w_{k+1}h_{k+1} )^{-1} \tag{13} \\ P_{k+1}^{-1} &= P_{k}^{-1} + h_{k+1}^{T}w_{k+1}h_{k+1} \tag{14} \\ \end{align*} PkPk−1Pk+1Pk+1−1=(HkTWkHk)−1=HkTWkHk=(Hk+1TWk+1Hk+1)−1=(HkTWkHk+hk+1Twk+1hk+1)−1=(Pk−1+hk+1Twk+1hk+1)−1=Pk−1+hk+1Twk+1hk+1(11)(12)(13)(14)
根据矩阵求逆引理,得
Pk+1=Pk−Pkhk+1T(hk+1Pkhk+1T+wk+1−1)−1hk+1Pk\begin{align*} P_{k+1} &= P_{k} - P_{k}h_{k+1}^{T} (h_{k+1}P_{k}h_{k+1}^{T} + w_{k+1}^{-1})^{-1} h_{k+1}P_{k} \tag{15} \\ \end{align*} Pk+1=Pk−Pkhk+1T(hk+1Pkhk+1T+wk+1−1)−1hk+1Pk(15)
由式(4)(9)(12)(14),得出估计递推公式:
X^k+1=Pk+1Hk+1TWk+1Zk+1=Pk+1(HkTWkZk+hk+1Twk+1zk+1)=Pk+1(Pk−1X^k+hk+1Twk+1zk+1)=Pk+1((Pk+1−1−hk+1Twk+1hk+1)X^k+hk+1Twk+1zk+1)=X^k+Pk+1hk+1Twk+1(zk+1−hk+1X^k)=X^k+Kk+1(zk+1−hk+1X^k)\begin{align*} \hat{X}_{k+1} &= P_{k+1}H_{k+1}^{T}W_{k+1}Z_{k+1} \\ &= P_{k+1}(H_{k}^{T}W_{k}Z_{k} + h_{k+1}^{T}w_{k+1}z_{k+1} ) \\ &= P_{k+1}(P_{k}^{-1} \hat{X}_{k} + h_{k+1}^{T}w_{k+1}z_{k+1} ) \\ &= P_{k+1}((P_{k+1}^{-1}-h_{k+1}^{T}w_{k+1}h_{k+1}) \hat{X}_{k} + h_{k+1}^{T}w_{k+1}z_{k+1} ) \\ &= \hat{X}_{k} + P_{k+1}h_{k+1}^{T}w_{k+1} (z_{k+1} - h_{k+1} \hat{X}_{k}) \\ &= \hat{X}_{k} + K_{k+1} (z_{k+1} - h_{k+1} \hat{X}_{k}) \tag{16} \\ \end{align*} X^k+1=Pk+1Hk+1TWk+1Zk+1=Pk+1(HkTWkZk+hk+1Twk+1zk+1)=Pk+1(Pk−1X^k+hk+1Twk+1zk+1)=Pk+1((Pk+1−1−hk+1Twk+1hk+1)X^k+hk+1Twk+1zk+1)=X^k+Pk+1hk+1Twk+1(zk+1−hk+1X^k)=X^k+Kk+1(zk+1−hk+1X^k)(16)
其中,Kk+1K _{k+1}Kk+1为递推增益
Kk+1=Pk+1hk+1Twk+1\begin{align*} K_{k+1} &= P_{k+1}h_{k+1}^{T}w_{k+1} \tag{17} \\ \end{align*} Kk+1=Pk+1hk+1Twk+1(17)
对于加权最小二乘估计,式(15)(16)(17)即为其递推最小二乘估计(RLS)的递推公式:
Pk+1=Pk−Pkhk+1T(hk+1Pkhk+1T+wk+1−1)−1hk+1PkKk+1=Pk+1hk+1Twk+1X^k+1=X^k+Kk+1(zk+1−hk+1X^k)\begin{align*} P_{k+1} &= P_{k} - P_{k}h_{k+1}^{T} (h_{k+1}P_{k}h_{k+1}^{T} + w_{k+1}^{-1})^{-1} h_{k+1}P_{k} \tag{15} \\ K_{k+1} &= P_{k+1}h_{k+1}^{T}w_{k+1} \tag{17} \\ \hat{X}_{k+1} &= \hat{X}_{k} + K_{k+1} (z_{k+1} - h_{k+1} \hat{X}_{k}) \tag{16} \\ \end{align*} Pk+1Kk+1X^k+1=Pk−Pkhk+1T(hk+1Pkhk+1T+wk+1−1)−1hk+1Pk=Pk+1hk+1Twk+1=X^k+Kk+1(zk+1−hk+1X^k)(15)(17)(16)
对于最优加权最小二乘估计,将wk+1=rk+1−1w_{k+1}=r_{k+1}^{-1}wk+1=rk+1−1代入上式,rk+1−1r_{k+1}^{-1}rk+1−1为第k+1k+1k+1次观测噪声vk+1v_{k+1}vk+1的方差,到其递推最小二乘估计(RLS)的递推公式:
Pk+1=Pk−Pkhk+1T(hk+1Pkhk+1T+rk+1)−1hk+1PkKk+1=Pk+1hk+1Trk+1−1X^k+1=X^k+Kk+1(zk+1−hk+1X^k)\begin{align*} P_{k+1} &= P_{k} - P_{k}h_{k+1}^{T} (h_{k+1}P_{k}h_{k+1}^{T} + r_{k+1})^{-1} h_{k+1}P_{k} \tag{18} \\ K_{k+1} &= P_{k+1}h_{k+1}^{T}r_{k+1}^{-1} \tag{19} \\ \hat{X}_{k+1} &= \hat{X}_{k} + K_{k+1} (z_{k+1} - h_{k+1} \hat{X}_{k}) \tag{16}\\ \end{align*} Pk+1Kk+1X^k+1=Pk−Pkhk+1T(hk+1Pkhk+1T+rk+1)−1hk+1Pk=Pk+1hk+1Trk+1−1=X^k+Kk+1(zk+1−hk+1X^k)(18)(19)(16)
关于初值X^0\hat{X}_{0}X^0与P0P_{0}P0有两种方法确定[2]:
- 批量计算前n次观测实验数据得到;
- 假设X^0=0\hat{X}_{0}=0X^0=0与P0=CTCIP_{0}=C^{T}CIP0=CTCI,CCC为一个充分大的正数。
后者比前者不需要计算n×nn \times nn×n阶逆矩阵,但是要经过一定次数迭代后才能得到满意估计。
多维观测
假设第iii组实验的观测值ZiZ_{i}Zi为mmm维观测向量,对应的观测噪声ViV_{i}Vi为mmm维观测向量,观测转移矩阵HiH_{i}Hi为m×nm \times nm×n阶矩阵,有:
Zi=[zi,1zi,2⋮zi,m],Vi=[vi,1vi,2⋮vi,m],Var(Vi)=Ri,Hi=[hi,1,1(θ)hi,1,2(θ)⋯hi,1,n(θ)hi,2,1(θ)hi,2,2(θ)⋯hi,2,n(θ)⋮⋮⋱⋮hm,2,1(θ)hm,2,2(θ)⋯hm,2,n(θ)]\begin{align*} Z_{i} &= \begin{bmatrix} z_{i,1} \\ z_{i,2} \\ \vdots\\ z_{i,m} \end{bmatrix} ,V_{i} = \begin{bmatrix} v_{i,1} \\ v_{i,2} \\ \vdots\\ v_{i,m} \end{bmatrix}, Var(V_i) = R_{i}, H_{i} = \begin{bmatrix} h_{i,1,1}(\theta)& h_{i,1,2}(\theta)& \cdots& h_{i,1,n}(\theta) \\ h_{i,2,1}(\theta)& h_{i,2,2}(\theta)& \cdots& h_{i,2,n}(\theta) \\ \vdots & \vdots& \ddots& \vdots\\ h_{m,2,1}(\theta)& h_{m,2,2}(\theta)& \cdots& h_{m,2,n}(\theta) \end{bmatrix} \end{align*} Zi=zi,1zi,2⋮zi,m,Vi=vi,1vi,2⋮vi,m,Var(Vi)=Ri,Hi=hi,1,1(θ)hi,2,1(θ)⋮hm,2,1(θ)hi,1,2(θ)hi,2,2(θ)⋮hm,2,2(θ)⋯⋯⋱⋯hi,1,n(θ)hi,2,n(θ)⋮hm,2,n(θ)
对于第iii组实验,观测值向量为:
Zi=HiX+Vi\begin{align*} Z_{i} = H_{i}X+V_{i} \tag{20} \end{align*} Zi=HiX+Vi(20)
对于全部kkk组实验,观测值向量为:
Zˉk=HˉkX+Vˉk(21)\bar{Z}_{k} = \bar{H}_{k}X + \bar{V}_{k} \tag{21} Zˉk=HˉkX+Vˉk(21)
其中
Zˉk=[Z1Z2⋮Zk],Hˉk=[H1H2⋮Hk],Vˉk=[V1V2⋮Vk]\begin{align*} \bar{Z}_{k} &= \begin{bmatrix} Z_{1} \\ Z_{2} \\ \vdots\\ Z_{k} \end{bmatrix} , \bar{H}_{k} &= \begin{bmatrix} H_{1} \\ H_{2} \\ \vdots\\ H_{k} \end{bmatrix} , \bar{V}_{k} &= \begin{bmatrix} V_{1} \\ V_{2} \\ \vdots\\ V_{k} \end{bmatrix} \end{align*} Zˉk=Z1Z2⋮Zk,Hˉk=H1H2⋮Hk,Vˉk=V1V2⋮Vk
根据加权最小二乘估计(WLS)准则:加权残差平方和最小。其代价函数为:
J=(Zˉk−HˉkX^)TWˉk(Zˉk−HˉkX^)\begin{align*} J &= (\bar{Z}_{k} - \bar{H}_{k} \hat{X})^{T} \bar{W}_{k} (\bar{Z}_{k} - \bar{H}_{k} \hat{X}) \tag{22} \end{align*} J=(Zˉk−HˉkX^)TWˉk(Zˉk−HˉkX^)(22)
式中,Wˉk\bar{W}_{k}Wˉk为对称正定加权矩阵。
可得估计值向量X^k\hat{X}_{k}X^k为:
X^k=(HˉkTWˉkHˉk)−1HˉkTWˉkZˉk\begin{align*} \hat{X}_{k} &= (\bar{H}_{k}^{T} \bar{W}_{k} \bar{H}_{k} ) ^{-1} \bar{H}_{k}^{T}\bar{W}_{k} \bar{Z}_{k} \tag{23} \end{align*} X^k=(HˉkTWˉkHˉk)−1HˉkTWˉkZˉk(23)
现得到第k+1k+1k+1次观测值为:
Zk+1=Hk+1X+Vk+1\begin{align*} Z_{k+1} = H_{k+1}X + V_{k+1} \tag{24} \end{align*} Zk+1=Hk+1X+Vk+1(24)
设第k+1k+1k+1次加权矩阵为:
Wˉk+1=[Wˉk00Wk+1]\begin{align*} \bar{W}_{k+1} &= \begin{bmatrix} \bar{W}_{k}& 0 \\ 0& W_{k+1} \\ \end{bmatrix} \end{align*} Wˉk+1=[Wˉk00Wk+1]
根据式(11)(12)(13)(14),得
Pˉk=(HˉkTWˉkHˉk)−1Pˉk−1=HˉkTWˉkHˉkPˉk+1=(Pˉk−1+Hk+1TWk+1Hk+1)−1Pˉk+1−1=Pˉk−1+Hk+1TWk+1Hk+1\begin{align*} \bar{P}_{k} &= (\bar{H}_{k}^{T}\bar{W}_{k}\bar{H}_{k})^{-1} \tag{25} \\ \bar{P}_{k}^{-1} &= \bar{H}_{k}^{T}\bar{W}_{k}\bar{H}_{k} \tag{26} \\ \bar{P}_{k+1} &= (\bar{P}_{k}^{-1} + H_{k+1}^{T}W_{k+1}H_{k+1} )^{-1} \tag{27} \\ \bar{P}_{k+1}^{-1} &= \bar{P}_{k}^{-1} + H_{k+1}^{T}W_{k+1}H_{k+1} \tag{28} \\ \end{align*} PˉkPˉk−1Pˉk+1Pˉk+1−1=(HˉkTWˉkHˉk)−1=HˉkTWˉkHˉk=(Pˉk−1+Hk+1TWk+1Hk+1)−1=Pˉk−1+Hk+1TWk+1Hk+1(25)(26)(27)(28)
根据式(15)(16)(17),其加权最小二乘估计的递推最小二乘估计(RLS)的递推公式:
Pˉk+1=Pˉk−PˉkHk+1T(Hk+1PˉkHk+1T+Wk+1−1)−1Hk+1PˉkKk+1=Pˉk+1Hk+1TWk+1X^k+1=X^k+Kk+1(Zk+1−Hk+1X^k)\begin{align*} \bar{P}_{k+1} &= \bar{P}_{k} - \bar{P}_{k}H_{k+1}^{T} (H_{k+1}\bar{P}_{k}H_{k+1}^{T} + W_{k+1}^{-1})^{-1} H_{k+1}\bar{P}_{k} \tag{29} \\ K_{k+1} &= \bar{P}_{k+1}H_{k+1}^{T}W_{k+1} \tag{30} \\ \hat{X}_{k+1} &= \hat{X}_{k} + K_{k+1} (Z_{k+1} - H_{k+1} \hat{X}_{k}) \tag{31} \\ \end{align*} Pˉk+1Kk+1X^k+1=Pˉk−PˉkHk+1T(Hk+1PˉkHk+1T+Wk+1−1)−1Hk+1Pˉk=Pˉk+1Hk+1TWk+1=X^k+Kk+1(Zk+1−Hk+1X^k)(29)(30)(31)
如果取加权矩阵:
Wˉk=Rˉk−1=[R10⋯00R2⋯0⋮⋮⋱⋮00⋯Rk]Wk+1=Rk+1−1=Var(Vk+1)Wˉk+1=[Wˉk00Wk+1]=[Rˉk−100Rk+1−1]\begin{align*} \bar{W}_{k} &= \bar{R}_{k}^{-1} = \begin{bmatrix} R_{1}& 0& \cdots& 0 \\ 0& R_{2}& \cdots& 0 \\ \vdots& \vdots& \ddots& \vdots \\ 0& 0& \cdots& R_{k} \\ \end{bmatrix} \tag{32} \\ W_{k+1} &= R_{k+1}^{-1} = Var(V_{k+1}) \tag{33} \\ \bar{W}_{k+1} &= \begin{bmatrix} \bar{W}_{k}& 0 \\ 0& W_{k+1} \\ \end{bmatrix} = \begin{bmatrix} \bar{R}_{k}^{-1}& 0 \\ 0& R_{k+1}^{-1} \\ \end{bmatrix} \tag{34} \end{align*} WˉkWk+1Wˉk+1=Rˉk−1=R10⋮00R2⋮0⋯⋯⋱⋯00⋮Rk=Rk+1−1=Var(Vk+1)=[Wˉk00Wk+1]=[Rˉk−100Rk+1−1](32)(33)(34)
根据式(29-34),其最优加权最小二乘估计的递推最小二乘估计(RLS)递推公式:
Pˉk+1=Pˉk−PˉkHk+1T(Hk+1PˉkHk+1T+Rk+1)−1Hk+1PˉkKk+1=Pˉk+1Hk+1TRk+1−1X^k+1=X^k+Kk+1(Zk+1−Hk+1X^k)\begin{align*} \bar{P}_{k+1} &= \bar{P}_{k} - \bar{P}_{k}H_{k+1}^{T} (H_{k+1}\bar{P}_{k}H_{k+1}^{T} + R_{k+1})^{-1} H_{k+1}\bar{P}_{k} \tag{35} \\ K_{k+1} &= \bar{P}_{k+1}H_{k+1}^{T}R_{k+1}^{-1} \tag{36} \\ \hat{X}_{k+1} &= \hat{X}_{k} + K_{k+1} (Z_{k+1} - H_{k+1} \hat{X}_{k}) \tag{37} \\ \end{align*} Pˉk+1Kk+1X^k+1=Pˉk−PˉkHk+1T(Hk+1PˉkHk+1T+Rk+1)−1Hk+1Pˉk=Pˉk+1Hk+1TRk+1−1=X^k+Kk+1(Zk+1−Hk+1X^k)(35)(36)(37)
关于初值X^0\hat{X}_{0}X^0与Pˉ0\bar{P}_{0}Pˉ0有两种方法确定:
- 批量计算前n次观测实验数据得到;
- 假设X^0=0\hat{X}_{0}=0X^0=0与Pˉ=CTCI\bar{P}=C^{T}CIPˉ=CTCI,CCC为一个充分大的正数。
后者比前者不需要计算mn×mnmn \times mnmn×mn阶逆矩阵,但是要经过一定次数迭代后才能得到满意估计。
衰减加权
前文表述的加权矩阵将过去和现在的数据视为同等重要。但有些情况被估参数向量可能会随着时间而缓慢变化, 此时应该重视当前数据而逐渐衰减过去数据的影响,只需如下选择加权矩阵:
Wk=[e−(k−1)a0⋯000e−(k−2)a⋯00⋮⋮⋱⋮⋮00⋯e−a000⋯01]=[Wk−1e−a001]\begin{align*} W_{k} &= \begin{bmatrix} e^{-(k-1)a}& 0& \cdots& 0& 0 \\ 0& e^{-(k-2)a}& \cdots& 0& 0 \\ \vdots& \vdots& \ddots& \vdots& \vdots \\ 0& 0& \cdots& e^{-a}& 0 \\ 0& 0& \cdots& 0& 1 \end{bmatrix} = \begin{bmatrix} W_{k-1}e^{-a}& 0 \\ 0& 1 \end{bmatrix} \tag{38} \\ \end{align*} Wk=e−(k−1)a0⋮000e−(k−2)a⋮00⋯⋯⋱⋯⋯00⋮e−a000⋮01=[Wk−1e−a001](38)
其中,aaa为一个正数,称为衰减因子。
参考文献
[1] 最优估计准则与方法(5)加权最小二乘估计(WLS)_学习笔记
https://blog.csdn.net/jimmychao1982/article/details/149656746
[2] 《最优估计理论》,周凤歧,2009,高等教育出版社。
[3] 《最优估计理论》,刘胜,张红梅著,2011,科学出版社。