当前位置: 首页 > news >正文

RTDETR融合DECS-Net中的FFM模块


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention》

一、 模块介绍

        论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0957417424018177

        代码链接:https://github.com/zZhiG/DECS-Net?tab=readme-ov-file

论文速览:

        裂缝是结构严重损伤的早期标志,也是结构健康评价和监测过程中的重要指标。然而,复杂的背景干扰使得小裂纹的分割成为一项极具挑战性的任务。为此,构建了一种基于卷积神经网络(CNN)和变压器的双编码器裂纹分割网络(DECS-Net),实现了裂纹的自动检测。首先,提出了一种高低频注意(HLA)机制,利用Haar小波提取信号的近似分量和详细分量,并进一步处理得到信号的低频和高频特征;此外,还设计了局部增强前馈网络(local Enhanced Feedforward Network, LEFN),以提高网络的局部信息感知能力。其次,提出特征融合模块(feature Fusion Module, FFM),将CNN编码器提取的局部特征与变压器编码器提取的全局上下文特征融合,实现跨域融合和相关性增强;

总结:


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

RT-DETR更新汇总贴(含免费教程)文章浏览阅读264次。RT-DETR使用教程:缝合教程: RT-DETR中的yaml文件详解:labelimg使用教程:_rt-deterhttps://xy2668825911.blog.csdn.net/article/details/143696113

二、二创融合模块

2.1 相关代码

# https://blog.csdn.net/StopAndGoyyy?spm=1011.2124.3001.5343
# A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention
class DSC(nn.Module):def __init__(self, c_in, c_out, k_size=3, stride=1, padding=1):super(DSC, self).__init__()self.c_in = c_inself.c_out = c_outself.dw = nn.Conv2d(c_in, c_in, k_size, stride, padding, groups=c_in)self.pw = nn.Conv2d(c_in, c_out, 1, 1)def forward(self, x):out = self.dw(x)out = self.pw(out)return outclass IDSC(nn.Module):def __init__(self, c_in, c_out, k_size=3, stride=1, padding=1):super(IDSC, self).__init__()self.c_in = c_inself.c_out = c_outself.dw = nn.Conv2d(c_out, c_out, k_size, stride, padding, groups=c_out)self.pw = nn.Conv2d(c_in, c_out, 1, 1)def forward(self, x):out = self.pw(x)out = self.dw(out)return outclass FFM(nn.Module):def __init__(self, dim1):super().__init__()self.trans_c = nn.Conv2d(dim1, dim1, 1)self.avg = nn.AdaptiveAvgPool2d(1)self.li1 = nn.Linear(dim1, dim1)self.li2 = nn.Linear(dim1, dim1)self.qx = DSC(dim1, dim1)self.kx = DSC(dim1, dim1)self.vx = DSC(dim1, dim1)self.projx = DSC(dim1, dim1)self.qy = DSC(dim1, dim1)self.ky = DSC(dim1, dim1)self.vy = DSC(dim1, dim1)self.projy = DSC(dim1, dim1)self.concat = nn.Conv2d(dim1 * 2, dim1, 1)self.fusion = nn.Sequential(IDSC(dim1 * 4, dim1),nn.BatchNorm2d(dim1),nn.GELU(),DSC(dim1, dim1),nn.BatchNorm2d(dim1),nn.GELU(),nn.Conv2d(dim1, dim1, 1),nn.BatchNorm2d(dim1),nn.GELU())def forward(self, x1):x, y = x1y = y.reshape(y.size()[0], -1, y.size()[1])b, c, h, w = x.shapeB, N, C = y.shapeH = W = int(N ** 0.5)x = self.trans_c(x)y = y.reshape(B, H, W, C).permute(0, 3, 1, 2)avg_x = self.avg(x).permute(0, 2, 3, 1)avg_y = self.avg(y).permute(0, 2, 3, 1)x_weight = self.li1(avg_x)y_weight = self.li2(avg_y)x = x.permute(0, 2, 3, 1) * x_weighty = y.permute(0, 2, 3, 1) * y_weightout1 = x * yout1 = out1.permute(0, 3, 1, 2)x = x.permute(0, 3, 1, 2)y = y.permute(0, 3, 1, 2)qy = self.qy(y).reshape(B, 8, C // 8, H // 4, 4, W // 4, 4).permute(0, 3, 5, 1, 4, 6, 2).reshape(B, N // 16, 8,16, C // 8)kx = self.kx(x).reshape(B, 8, C // 8, H // 4, 4, W // 4, 4).permute(0, 3, 5, 1, 4, 6, 2).reshape(B, N // 16, 8,16, C // 8)vx = self.vx(x).reshape(B, 8, C // 8, H // 4, 4, W // 4, 4).permute(0, 3, 5, 1, 4, 6, 2).reshape(B, N // 16, 8,16, C // 8)attnx = (qy @ kx.transpose(-2, -1)) * (C ** -0.5)attnx = attnx.softmax(dim=-1)attnx = (attnx @ vx).transpose(2, 3).reshape(B, H // 4, w // 4, 4, 4, C)attnx = attnx.transpose(2, 3).reshape(B, H, W, C).permute(0, 3, 1, 2)attnx = self.projx(attnx)qx = self.qx(x).reshape(B, 8, C // 8, H // 4, 4, W // 4, 4).permute(0, 3, 5, 1, 4, 6, 2).reshape(B, N // 16, 8,16, C // 8)ky = self.ky(y).reshape(B, 8, C // 8, H // 4, 4, W // 4, 4).permute(0, 3, 5, 1, 4, 6, 2).reshape(B, N // 16, 8,16, C // 8)vy = self.vy(y).reshape(B, 8, C // 8, H // 4, 4, W // 4, 4).permute(0, 3, 5, 1, 4, 6, 2).reshape(B, N // 16, 8,16, C // 8)attny = (qx @ ky.transpose(-2, -1)) * (C ** -0.5)attny = attny.softmax(dim=-1)attny = (attny @ vy).transpose(2, 3).reshape(B, H // 4, w // 4, 4, 4, C)attny = attny.transpose(2, 3).reshape(B, H, W, C).permute(0, 3, 1, 2)attny = self.projy(attny)out2 = torch.cat([attnx, attny], dim=1)out2 = self.concat(out2)out = torch.cat([x, y, out1, out2], dim=1)out = self.fusion(out)return out

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

​​

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, CCRI, [128, 5, True, False]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 4, CCRI, [256, 3, True, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 4, CCRI, [512, 3, True, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, CCRI, [1024, 3, True, False]]head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 2, RepC4, [256]] # 15, fpn_blocks.0- [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0- [[-2, -1], 1, FFM, [ ]] # cat backbone P4- [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0- [[-1, 16], 1, Concat, [1]] # cat Y4- [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1- [[-1, 11], 1, Concat, [1]] # cat Y5- [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1- [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'if __name__ == '__main__':model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')# model.load('yolov8n.pt')model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,amp=True, mosaic=False, project='runs/train', name='exp')

​​

         在train.py脚本中填入修改好的yaml路径,运行即可训。

​​


http://www.dtcms.com/a/288165.html

相关文章:

  • Verilog *2* SPI-立创逻辑派G1测试-1
  • 多表查询-8-练习总结
  • 【LeetCode 热题 100】437. 路径总和 III——(解法一)递归递归!
  • 【Linux】mmap的介绍和使用
  • [硬件电路-36]:模拟电路的基本组成要素以及模拟信号处理
  • Python条件控制艺术:侦探破解犯罪谜题逻辑
  • 浏览器渲染原理——计算属性和布局过程常考内容
  • 如何实现一个定时任务
  • LibreTv在线观影项目部署开箱即用
  • 如何解决Flink CDC同步时间类型字段8小时时间差的问题,以MySQL为例
  • 相似度度量方法
  • 车载刷写框架 --- 关于私有节点刷写失败未报引起的反思
  • 暑期算法训练.4
  • 用虚拟机体验纯血鸿蒙所有机型!
  • 【成品设计】基于STM32的水资源监控系列项目
  • 几个好用的MCP分享
  • 使用 PlanetScope 卫星图像绘制水质参数:以莫干湖为例
  • 创建第二大脑--第五章 组织:以行动为导向
  • 使用Python进行文件拷贝的方法
  • NLP中情感分析如何结合知识图谱在跨文化领域提升观念分析和价值判断的准确性?
  • Dockerfile格式
  • windows wsl ubuntu 如何安装 open-jdk8
  • [硬件电路-39]:激光光路的光信号处理、模拟电路的电信号处理、数字电路的电信号处理、软件的信号处理,有哪些共通的操作、运算、变换?
  • BabyAGI 是一个用于自构建自主代理的实验框架
  • Java脚本API参数传递机制详解
  • 让Logo/文字“自己画自己”!✨
  • 一套完整的反向海淘代购系统是一项复杂的系统工程,需要整合电商、物流、支付、清关、仓储、用户服务等多个环节
  • Codeforces Round 1037(Div.3)
  • C++ 比较器(Comparator)超详细笔记
  • 轻松学习C++:基本语法解析