当前位置: 首页 > news >正文

Leetcode 3585. Find Weighted Median Node in Tree

  • Leetcode 3585. Find Weighted Median Node in Tree
    • 1. 解题思路
    • 2. 代码实现
  • 题目链接:3585. Find Weighted Median Node in Tree

1. 解题思路

这一题核心思路还是一个LCA算法,即最小公共父节点算法。

具体来说的话,对于每一个query给到的节点 u , v u,v u,v,我们都可以先通过LCA算法找到其最小公共父节点 p p p,然后我们可以提前在预处理过程中记录下每一个节点到根节点 0 0 0的距离为 d i d_i di,此时不难发现三个节点 u , v , p u,v,p u,v,p到根节点的距离分别就是 d u , d v , d p d_u, d_v, d_p du,dv,dp,而 u , v u,v u,v两节点之间的距离就是 d u + d v − 2 d p d_u+d_v-2d_p du+dv2dp,此时,我们不难找到 u v uv uv线段的中点。

此时,我们需要分类讨论一下:

  • 如果其中点在线段右侧,即 p v pv pv这一段,那么我们要做的就是找到 v v v的父节点当中第一个距离大于等于 d v − ( d u + d v − 2 d p ) / 2 d_v-(d_u+d_v-2d_p)/2 dv(du+dv2dp)/2的节点;
  • 如果其中点在线段左侧,即 p u pu pu这一段,那么我们要做的就是找到 v v v的父节点当中第一个距离小于 d v − ( d u + d v − 2 d p ) / 2 d_v-(d_u+d_v-2d_p)/2 dv(du+dv2dp)/2的节点;

而这个我们只需要稍微调整一下LCA的倍增过程即可快速实现。

2. 代码实现

给出python代码实现如下:

import math
from collections import deque
from typing import List, Tupleclass Tree:def __init__(self, n: int, edges: List[Tuple[int, int, int]], root: int = 0):self.n = nself.max_log = math.floor(math.log2(n)) + 1  # 最大跳跃步数的对数self.graph = [[] for _ in range(n)]self.distances = [0 for _ in range(n)]self.depth = [-1] * nself.parent = [[-1] * n for _ in range(self.max_log)]  # parent[k][i]: i 的第 2^k 级祖先# 构建邻接表for u, v, w in edges:self.graph[u].append((v, w))self.graph[v].append((u, w))# 预处理深度和祖先表self._bfs(root)def _bfs(self, root: int):"""BFS 初始化深度和直接父节点(即 2^0 级祖先)"""queue = deque([root])self.depth[root] = 0self.distances[root] = 0self.parent[0][root] = -1  # 根节点无父节点while queue:u = queue.popleft()for v, w in self.graph[u]:if v == self.parent[0][u]:continueself.depth[v] = self.depth[u] + 1self.distances[v] = self.distances[u] + wself.parent[0][v] = uqueue.append(v)# 递推计算 2^k 级祖先for k in range(1, self.max_log):for i in range(self.n):if self.parent[k-1][i] != -1:self.parent[k][i] = self.parent[k-1][self.parent[k-1][i]]def query(self, u: int, v: int) -> int:"""查询节点 u 和 v 的最近公共祖先"""# 确保 u 是深度较大的节点if self.depth[u] < self.depth[v]:u, v = v, u# 将 u 上跳到与 v 同深度diff = self.depth[u] - self.depth[v]k = 0while diff:if diff & 1:u = self.parent[k][u]diff >>= 1k += 1if u == v:return u# 同步上跳,寻找最近公共祖先for k in range(self.max_log - 1, -1, -1):if self.parent[k][u] != self.parent[k][v]:u = self.parent[k][u]v = self.parent[k][v]return self.parent[0][u]def query_distance(self, u):return self.distances[u]def query_closest_parent(self, u: int, d: float):h = self.max_log-1while h >= 0:if self.parent[h][u] != -1 and self.distances[self.parent[h][u]] >= d:u = self.parent[h][u]h -= 1return uclass Solution:def findMedian(self, n: int, edges: List[List[int]], queries: List[List[int]]) -> List[int]:tree = Tree(n, edges, 0)def query(u, v):p = tree.query(u, v)du, dv, dp = tree.query_distance(u), tree.query_distance(v), tree.query_distance(p)d1, d2 = du-dp, dv-dpd = (d1+d2) / 2if d <= d2:return tree.query_closest_parent(v, dv-d)else:w = tree.query_closest_parent(u, du-d)dw = tree.query_distance(w)return tree.parent[0][w] if du-dw != d else wreturn [query(u, v) for u, v in queries]

提交代码评测得到:耗时1292ms,占用内存102.01MB。

相关文章:

  • 【python深度学习】Day 54 Inception网络及其思考
  • 基于C#部署YOLOv5目标检测模型核心技术深度解析
  • 如何让DeepSeek-R1-Distill-Qwen-32B支持Function calling
  • Hudi 与 Hive 集成
  • 阿里开源的MaskSearch:教AI学会“自己找答案”的魔法书
  • 域与对象的生命周期
  • WSL备份与还原
  • Python函数基础知识(2/3)
  • SAP顾问职位汇总(第24周)
  • IDA动态调试环境配置全流程
  • Arduino入门教程:6、计时与定时
  • [从0到1]环境准备--anaconda与pycharm的安装
  • NodeJS怎么通过集群提高NodeJS的性能
  • 第一章 绪论
  • leetcode138-随机链表的复制
  • 《k8s 部署》常见报错类型1
  • 前端面试九之Vue Router
  • 【驱动设计的硬件基础】I²C
  • scikit-image (skimage) 完整API参考文档
  • AI是什么?大模型、语料、训练、推理、机器学习、神经网络等专业名词如何关联
  • 深圳网站建设公司 概况/现在网络推广哪家好
  • 做视频直播网站/百度账号登录个人中心
  • 电子商务网站软件建设的核心是什么/网站推广网络营销方案
  • 哪家做网站好 成都/搜索引擎的使用方法和技巧
  • 网站制作方案策划书/宁波seo教学
  • 北京市建设工程信息网站/三只松鼠营销案例分析