当前位置: 首页 > news >正文

NumPy数组访问

NumPy数组访问

  • 索引访问
  • 切片访问
  • 布尔索引
  • 花式索引
  • 迭代数组
    • 1、默认遍历
    • 2、控制顺序
      • 行优先
      • 列优先
    • 3、读写模式
    • 4、其他参数
  • 广播迭代
    • 1、标量与一维数组
    • 2、标量与二维数组
    • 3、二维数据与一维数组
    • 4、列向量与行向量相加
    • 5、二维数据与二维数组

索引访问

通过下标来访问数据元素,当总数不知道的时候,使用负值索引就很方便,特别是切片访问的时候

数组值北京上海广州深圳
正值索引0123
负值索引0-3-2-1
a = np.array([1, 2, 3, 4, 5, 6])print("| a[1]", a[1], sep=" | ", end="|\r\n")
print("| a[-1]", a[-1], sep=" | ", end="|\r\n")
print("| a[a.size-1]", a[a.size - 1], sep=" | ", end="|\r\n")

切片访问

1、 [start:end:step] , step可以为负值,start包括,end不包括
2、通过切片返回的数组元素与原数组是一个引用,一改全改

  • start可以省略,不写默认从0开始
  • end可以省略,不写默认到-1结束
  • step可以省略,不写默认是1
a = np.array([1, 2, 3, 4, 5, 6])
print("| a[:3:2]", "[1,3]", a[:3:2], sep=" | ", end="|\r\n")
print("| a[1::2]", "[2,4,6]", a[1::2], sep=" | ", end="|\r\n")
print("| a[::2]", "[1,3,5]", a[::2], sep=" | ", end="|\r\n")
print("| a[::]", "[1,2,3,4,5,6]", a[::], sep=" | ", end="|\r\n")
print("| a[:-2:-2]", "[1,2,3,4,5,6]", a[-2:1:-2], sep=" | ", end="|\r\n")

二维数组切片:

1234
5678
9101112

针对多维维数组,每个轴分别切片,然后取交叉点的元素

  • 行(0轴),0👎1 -> 行0,1
  • 列(1轴),1:4:2 ->列1,3

最终结果是3行2列的数组

a = np.array([(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12)])
print(a[0:-1:1, 1:4:2])

布尔索引

1、通过一个布尔数组来索引目标数组
2、布尔数组与原数组形状必须相同
3、返回的新数组与原数组无关,可以随便修改,深层复制
4、返回数据是一个一维数组

一维数组:

a = np.arange(start=1, stop=5, step=1)
b = np.array((True, True, False, False), dtype=np.bool_)
print(a[b])
print(a[a % 2 == 0])

二维数组:

a = np.array([(1, 2, 3), (4, 5, 6)], dtype=np.int32)
b = np.array([(True, False, False), (False, True, True)], dtype=np.bool_)
print(a[b])

花式索引

1、使用整数列表、整数数组作为数组索引
2、新数组的元素属于深层复制,修改不影响原数组

一维数组:

a = np.arange(start=1, stop=10, step=1)
# 整数数组
b = np.array([1, 2, 3])
print(a[b])# 整数列表
ll = [0, 2, 4]
print(a[ll])

二维数组:

123
456
789
  • 0轴索引数组
12
22
  • 1轴索引数组
00
11
  • 结果展示
a[1,0]a[2,0]
a[2,1]a[2,1]
a = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype=np.int32)
# 0轴
d0 = np.array([[1, 2], [2, 2]])
# 1轴
d1 = np.array([[0, 0], [1, 1]])
print(a[d0, d1])[[4 7][8 8]]

迭代数组

使用numpy.nditer访问数组元素

1、默认遍历

a = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype=np.int32)
for x in np.nditer(a):print(x, end=", ")
print('\n')# 转置
for x in np.nditer(a.T):print(x, end=", ")
print('\n')

2、控制顺序

行优先

a = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype=np.int32)# C order,即是行序优先
for x in np.nditer(a, order='C'):print(x, end=", ")
print('\n')

列优先

a = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype=np.int32)# Fortran order,即是列序优先
for x in np.nditer(a, order='F'):print(x, end=", ")
print('\n')

3、读写模式

op_flags参数,默认read-only,可以设置readwrite writeonly

# 遍历中修改
a = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype=np.int32)for x in np.nditer(a, op_flags=['readwrite']):x[...] = 2 * x
print('修改后的数组是:')
print(a)

4、其他参数

flags参数

参数描述
c_index可以跟踪 C 顺序的索引
f_index可以跟踪 Fortran 顺序的索引
multi_index每次迭代可以跟踪一种索引类型
external_loop给出的值是具有多个值的一维数组,而不是零维数组
a = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype=np.int32)
it = np.nditer(a, flags=['f_index'])
for x in it:print('index:{0}, value:{1}'.format(it.index, x))
print("\n")it = np.nditer(a, flags=['c_index'])
for x in it:print('index:{0}, value:{1}'.format(it.index, x))
print("\n")it = np.nditer(a, flags=['multi_index'])
for x in it:print('index:{0}, value:{1}'.format(it.multi_index, x))
print("\n")for x in np.nditer(a, flags=['external_loop'], order='F'):print(x, end='\n')
print("\n")

广播迭代

1、数组拥有相同形状
2、当前维度的值相等
3、当前维度的值有一个是 1

1、标量与一维数组

标量与每一个元素相加

a = np.array([1, 2, 3])
b = a + 5
print(b)[6 7 8]

2、标量与二维数组

标量与每一个元素相加

a = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype=np.int32)
b = a + 5
print(b)[[ 6  7  8][ 9 10 11][12 13 14]]

3、二维数据与一维数组

这里将一维数组拉伸复制,最后对应相加

a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.array([10, 20, 30])result = a + b
print(result)

4、列向量与行向量相加

这里分别将两个一维数组拉伸复制,最后对应相加

a = np.array([[1], [2], [3]])
b = np.array([10, 20, 30])result = a + b
print(result)

5、二维数据与二维数组

这里对应元素相加

a = np.array([(1, 2, 3), (4, 5, 6)], dtype=np.int32)
b = np.array([(10, 20, 30), (40, 50, 60)], dtype=np.int32)
print(a + b)
http://www.dtcms.com/a/239158.html

相关文章:

  • MySQL从入门到DBA深度学习指南
  • 算法-数论
  • 每日八股文6.8
  • 通过Cline使用智能体
  • WebFuture 升级提示“不能同时包含聚集KEY和大字段””的处理办法
  • DDR供电设计中的VTT与VREF作用和区别
  • 深究二分查找算法:从普通到进阶
  • 【AIGC】RAGAS评估原理及实践
  • 可可·香奈儿 活出自己
  • 使用Mathematica实现Newton-Raphson收敛速度算法(简单高阶多项式)
  • Beckhoff(倍福) -- MES(ITAC) TCP 通讯
  • Wise Disk Cleaner:免费高效的系统清理专家
  • C++课设:从零开始打造影院订票系统
  • Java中的抽象类
  • 2.1.3_2 编码和调制(下)
  • 用 DeepSeek 创作一首属于自己的歌
  • 图的邻接表存储及求邻接点操作
  • 【QT】QT多语言切换
  • 极客时间:在 Google Colab 上尝试 Prefix Tuning
  • 01.SQL语言概述
  • 算法-构造题
  • CSS悬停闪现与a标签嵌套的问题
  • vue3:十六、个人中心-修改密码
  • 《前端面试题:JavaScript 作用域深度解析》
  • leetcode Top100 189.轮转数组
  • Python Cookbook-7.13 生成一个字典将字段名映射为列号
  • 【学习笔记】TLS
  • 【threejs】每天一个小案例讲解:题外话篇
  • JDK 17 新特性
  • Java常见异常处理指南:IndexOutOfBoundsException与ClassCastException深度解析