当前位置: 首页 > news >正文

基于机器学习的心脏病预测模型构建与可解释性分析

一、引言

  心脏病是威胁人类健康的重要疾病之一,早期预测和诊断对防治心脏病具有重要意义。本文利用公开的心脏病数据集,通过机器学习算法构建预测模型,并使用 SHAP 值进行模型可解释性分析,旨在为心脏病的辅助诊断提供参考。

 

二、数据准备与预处理

1. 数据加载

  数据集来源于 Kaggle 公开的心脏病数据集(heart.csv),包含 303 条样本和 14 个特征,目标变量为是否患有心脏病(target,0 表示无,1 表示有)。关键代码如下:

data = pd.read_csv('heart.csv')
print(f"数据规模: {data.shape}")  # 输出:数据规模: (303, 14)
print("目标分布:\n", data['target'].value_counts(normalize=True))

  目标分布显示正负样本比例约为 6:4,存在轻微不平衡,后续通过分层抽样处理。 

2. 特征划分

数值型特征:年龄、血压、胆固醇等连续变量,共 6 个。

分类型特征:性别、胸痛类型、血糖等离散变量,共 8 个。

cat_features = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']
num_features = [c for c in X.columns if c not in cat_features]

 

3. 预处理流程 

采用 ColumnTransformer 构建预处理管道:

数值型特征:标准化(StandardScaler)

分类型特征:独热编码(OneHotEncoder,丢弃第一个类别避免多重共线性)

preprocessor = ColumnTransformer([('num', StandardScaler(), num_features),('cat', OneHotEncoder(drop='first', handle_unknown='ignore'), cat_features)
])

 

 

三、模型训练与对比 

1. 算法选择与超参数调优

选取 4 种经典分类算法,使用 GridSearchCV 进行 5 折交叉验证,以 F1 分数为优化指标:

随机森林(RF):调优参数包括树的数量(n_estimators)和最大深度(max_depth)

逻辑回归(LR):调优参数为正则化系数(C)

决策树(DT):调优参数为最大深度(max_depth)

支持向量机(SVM):调优参数为正则化系数(C)和核函数(kernel)

2. 训练流程

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y  # 分层抽样保持样本分布
)for name, cfg in model_configs.items():pipe = Pipeline([('pre', preprocessor), ('model', cfg['model'])])grid = GridSearchCV(pipe, cfg['params'], cv=5, scoring='f1', n_jobs=-1)grid.fit(X_train, y_train)  # 训练模型# 计算评估指标

 

3. 模型性能对比 

模型

最佳参数

准确率

精确率

召回率

F1 分数

ROC-AUC

rf

{'model__max_depth': 10, 'model__n_estimators': 200}

0.87

0.88

0.85

0.86

0.93

lr

{'model__C': 1.0}

0.85

0.85

0.83

0.84

0.91

dt

{'model__max_depth': 10}

0.83

0.83

0.82

0.82

0.89

svm

{'model__C': 1, 'model__kernel': 'rbf'}

0.86

0.87

0.83

0.85

0.92

结论:随机森林(RF)在 F1 分数和 ROC-AUC 指标上表现最优,选为最终模型。 

 

 

四、模型可解释性分析(SHAP 值) 

1. SHAP 原理简介

  SHAP(SHapley Additive exPlanations)基于合作博弈论,通过计算每个特征对预测结果的贡献度,实现模型可解释性。

2. 特征重要性分析

 (1)条形图

 

(2)摘要图(Beeswarm) 

 

 

五、结论与展望 

 

1. 结论

  随机森林模型在心脏病预测中表现最佳,准确率达 87%,F1 分数 0.86。关键影响因素为冠状动脉钙化数量、地中海贫血筛查结果和运动后 ST 段变化,与医学常识一致,验证了模型的合理性。

 

2. 改进方向

  尝试集成学习(如 Stacking)或深度学习模型(如神经网络)。引入更多临床特征(如家族病史、生活习惯等)提升模型泛化能力。针对不平衡数据采用 SMOTE 等过采样技术优化。

相关文章:

  • 西瓜书第十章——聚类
  • buuctf-web
  • unix/linux source 命令,其历史争议、兼容性、生态、未来展望
  • 在Flutter中定义全局对象(如$http)而不需要import
  • JVM学习(七)--JVM性能监控
  • Tomcat优化篇
  • ASP.NET Core SignalR 身份认证集成指南(Identity + JWT)
  • Axure组件即拖即用:垂直折叠菜单(动态展开/收回交互)
  • APM32主控键盘全功能开发实战教程:软件部分
  • 【Java基础】Java入门教程
  • DeepSeek 赋能智慧消防:以 AI 之力筑牢城市安全 “防火墙”
  • 归一化相关
  • 大模型备案中语料安全详细说明
  • Ubuntu终端性能监视工具
  • 进阶日记(一)—LLMs本地部署与运行(更新中)
  • uni-app学习笔记十八--uni-app static目录简介
  • 人工智能100问☞第38问:什么是多模态模型?
  • Linux基础 文件描述符,重定向及缓冲区理解
  • 2024年数维杯国际大学生数学建模挑战赛B题空间变量协同估计方法研究解题全过程论文及程序
  • Vue3 + Element Plus 防止按钮重复点击的解决方案
  • 专业建设内涵包括哪些内容/搜索引擎优化关键词选择的方法有哪些
  • 政府网站代码模板/一键免费创建论坛网站
  • 建设 展示型企业网站/开网站需要什么流程
  • 可以用asp做哪些网站/网站项目开发流程
  • 临沂网站建设设计公司/seo中文
  • 最好的网站建设免费的/视频推广渠道有哪些