当前位置: 首页 > news >正文

每日c/c++题 备战蓝桥杯(P1011 [NOIP 1998 提高组] 车站)

P1011 [NOIP 1998 提高组] 车站——探索车站人数规律

在编程世界里,解决实际生活场景的复杂问题是一种极具魅力的挑战。今天,让我们一同深入探讨经典的“车站问题”,并用 C++ 实现一个精妙的解决方案。

题目解析

题目描述了一个火车站点的上、下车人数变化规律。始发站(第 1 站)上车人数为 ( n ),从第 3 站开始,上车人数遵循特定规律:上车人数是前两站上车人数之和,而下车人数等于上一站的上车人数。终点站(第 ( m ) 站)的前一站(第 ( m-1 ) 站)下车人数为 ( k )。我们的任务是找出第 ( s ) 站开出时车上的人数。

输入为四个整数:始发站上车人数 ( n ),车站总数 ( m ),终点站前一站下车人数 ( k ),以及所求站点编号 ( s )。

输出是第 ( s ) 站开出时车上的人数。

解题思路

1. 分析规律,建立数学模型

要解决这一问题,首先需要理解车站人数变化的规律:

  1. 第 1 站(始发站):上车人数为 ( n ),下车人数为 0,因此车上人数为 ( n )。
  2. 第 2 站:上车人数等于第 1 站上车人数(即 ( n )),下车人数也等于第 1 站上车人数(即 ( n )),所以车上人数保持为 ( n )。
  3. 第 3 站及以后
    • 上车人数为前两站上车人数之和。
    • 下车人数等于上一站的上车人数。

可以用数组 ( a[i] ) 表示第 ( i ) 站的上车人数,数组 ( b[i] ) 表示第 ( i ) 站的下车人数。初始条件:

  • ( a[1] = n )
  • ( a[2] = n )
  • ( b[1] = 0 )
  • ( b[2] = n )

从第 3 站开始:

  • ( a[i] = a[i-1] + a[i-2] )
  • ( b[i] = a[i-1] )

车上人数可表示为:

  • 第 ( i ) 站开出时车上人数 = 前一站开出时车上人数 + 本站在车上的人数变化(即 ( a[i] - b[i] ))

2. 动态规划求解

基于上述规律,我们可以采用动态规划的方法进行模拟。具体步骤如下:

  1. 初始化前两站的上车和下车人数。
  2. 按照规律计算后续各站的上车和下车人数。
  3. 累积计算每站开出时的车上人数。

3. 特殊条件处理

题目中给出了终点站前一站(第 ( m-1 ) 站)的下车人数为 ( k )。这意味着在计算过程中需要确保第 ( m-1 ) 站的下车人数满足这个条件。如果不符合,需要调整初始参数重新计算。

代码实现

以下是基于上述思路的 C++ 代码实现:

#include <iostream>
using namespace std;int main() {int n, m, k, s;cin >> n >> m >> k >> s;// 如果只有两个车站,直接输出结果if (m == 1) {cout << n << endl;return 0;}// 初始化数组,用于存储每站的上车人数和下车人数int a[m + 1], b[m + 1];a[1] = n;a[2] = n;b[1] = 0;b[2] = n;// 计算每站的上车和下车人数for (int i = 3; i <= m; i++) {a[i] = a[i - 1] + a[i - 2];b[i] = a[i - 1];}// 检查终点站前一站的下车人数是否符合条件if (b[m - 1] != k) {cout << "No solution" << endl;return 0;}// 计算每站开出时的车上人数int current = n; // 第1站开出时车上人数if (s == 1) {cout << current << endl;return 0;}for (int i = 2; i <= s; i++) {current += a[i] - b[i];}cout << current << endl;return 0;
}

代码解析

  1. 输入读取和特殊情况处理:首先读取输入参数,如果车站数 ( m ) 为 1,直接输出始发站人数 ( n )。
  2. 数组初始化:创建数组 ( a ) 和 ( b ),分别存储每站的上车人数和下车人数,并初始化前两站的值。
  3. 动态规划计算:从第 3 站开始,根据规律计算各站的上车和下车人数。
  4. 条件验证:检查终点站前一站的下车人数是否为 ( k ),若不满足则输出无解。
  5. 车上人数计算:从始发站开始,累加上下车人数变化,计算第 ( s ) 站开出时的车上人数。

总结

通过以上分析和实现,我们成功解决了“车站问题”。这一过程不仅锻炼了我们对动态规划的理解和应用能力,也让我们体会到数学规律在实际问题中的巧妙运用。希望这篇博客能为你带来启发,也期待你在编程的道路上不断探索,发现更多精彩!

相关文章:

  • 深兰科技董事长陈海波受邀出席2025苏商高质量发展(常州)峰会,共话AI驱动产业升级
  • MATLAB项目实战:阻尼振动与数据拟合项目
  • 流复制(Streaming Replication)与自动故障转移(Failover)实战:用Patroni或Repmgr搭建生产级数据库集群
  • visual studio 2022 初学流程
  • Photoshop使用钢笔绘制图形
  • 【ArcGIS微课1000例】0147:Geographic Imager6.2下载安装教程
  • CPT302 Multi-Agent Systems 题型
  • Axure疑难杂症:中继器新增数据时如何上传并存储图片(玩转中继器)
  • ch12 课堂参考代码 及 题目参考思路
  • 简述synchronized和java.util.concurrent.locks.Lock的异同 ?
  • 历年中国科学技术大学计算机保研上机真题
  • 历年中国农业大学计算机保研上机真题
  • 【TTS】基于GRPO的流匹配文本到语音改进:F5R-TTS
  • Kotlin-特殊类型
  • ArcGIS Pro 3.4 二次开发 - 图形图层
  • (笔记+作业)第五期书生大模型实战营---L1G2000 OpenCompass 评测书生大模型实践
  • 【sa-token】 sa-token非 web 上下文无法获取 HttpServletRequest。
  • 【前端】macOS 的 Gatekeeper 安全机制阻止你加载 bcrypt_lib.node 文件 如何解决
  • Spring Boot3.4.1 集成redis
  • 小黑大语言模型通过设计demo进行应用探索:langchain中chain的简单理解demo
  • 上海 网站备案系统/缅甸在线今日新闻
  • 南京做网站建设有哪些内容/百度查重工具
  • ae模板精品站/如何创建一个app平台
  • 成都网络营销精英/郑州推广优化公司
  • 网站建设全包哪家便宜/代运营套餐价格表
  • 网站备案需要拍照/百度关键词排名qq