杆件的拉伸与压缩变形
杆件的拉伸与压缩
第一题
Q u e s t i o n \mathcal{Question} Question
图示拉杆沿斜截面 m − m m-m m−m由两部分胶合而成。设在胶合面上许用拉应力 [ σ ] = 100 MPa [\sigma]=100\text{MPa} [σ]=100MPa,许用切应力 [ τ ] = 50 MPa [\tau]=50\text{MPa} [τ]=50MPa。并设杆件的拉力由胶合面的强度控制。试问:
- 为使杆件承受最大拉力 F F F, α \alpha α角的值应为多少?
- 若杆件横截面面积为 400 mm 2 400\text{mm}^2 400mm2,并规定 α ≤ 6 0 ∘ \alpha\leq60^{\circ} α≤60∘,试确定许可载荷 F F F。
A n s w e r \mathcal{Answer} Answer
由拉伸杆斜截面上的应力公式:
σ α = F A cos 2 α \begin{equation} \sigma_{\alpha}=\dfrac{F}{A}\cos^2 \alpha \end{equation} σα=AFcos2α
τ α = F A sin α cos α \begin{equation} \tau_{\alpha}=\dfrac{F}{A}\sin\alpha\cos\alpha \end{equation} τα=AFsinαcosα
该问题转化为以下最优化问题:
max F \max F maxF
s.t. { σ α = F A cos 2 α ≤ [ σ ] τ α = F A sin α cos α ≤ [ τ ] \begin{aligned} &\textbf{s.t.} \begin{cases} \sigma_{\alpha}=\dfrac{F}{A}\cos^{2}\alpha \leq [\sigma] \\ \tau_{\alpha}=\dfrac{F}{A}\sin\alpha\cos\alpha \leq [\tau] \end{cases} \end{aligned} s.t.⎩ ⎨ ⎧σα=AFcos2α≤[σ]τα=AFsinαcosα≤[τ]
在问题一的背景下:
α 0 = arctan [ τ ] [ σ ] = 26. 6 ∘ \alpha_0=\arctan\dfrac{[\tau]}{[\sigma]}=26.6^{\circ} α0=arctan[σ][τ]=26.6∘
在问题二的背景下:
F max = A [ σ ] cos 2 α 0 = 50 kN F_{\max}=\dfrac{A[\sigma]}{\cos^2\alpha_0}=50\text{kN} Fmax=cos2α0A[σ]=50kN
第二题
Q u e s t i o n \mathcal{Question} Question
重量为 W W W 的均质圆形等截面空心长钢杆,长度为 l l l,内径为 d d d,外径为 D D D。施工的某一过程中需要将其竖直悬吊于空中。若材料的弹性模量为 E E E,试求此时杆件在自重作用下的伸长量 Δ l \Delta l Δl。
A n s w e r \mathcal{Answer} Answer
取微元,其受轴力:
F N ( x ) = W l ( l − x ) F_N(x)=\frac{W}{l}(l-x) FN(x)=lW(l−x)
由胡克定律:
d ( δ l ) = F N d x E A \text{d}(\delta l)=\dfrac{F_{N}\text{d}x}{EA} d(δl)=EAFNdx
两边同时积分得到:
∫ L d ( δ l ) = ∫ 0 l F N d x E A \int_L\text{d}(\delta l)=\int_{0}^{l}\dfrac{F_{N}\text{d}x}{EA} ∫Ld(δl)=∫0lEAFNdx
故
Δ l = 2 l W E π ( D 2 − d 2 ) \Delta l=\dfrac{2lW}{E\pi \left(D^2-d^2\right)} Δl=Eπ(D2−d2)2lW
第三题
Q u e s t i o n \mathcal{Question} Question
在图示杆系中, B C BC BC和 B D BD BD两杆的材料相同,且抗拉和抗压许用应力相等,同为 [ σ ] [\sigma] [σ]。为使杆系使用的材料最省,试求夹角 θ \theta θ的值。
A n s w e r \mathcal{Answer} Answer
首先,分析 B B B 铰链的受力,根据平衡条件:
{ ∑ F x = 0 , F N 2 − F N 1 cos θ = 0 ∑ F y = 0 , F N 1 sin θ − F = 0 \begin{cases} \sum F_x = 0, & F_{N2} - F_{N1}\cos\theta = 0 \\ \sum F_y = 0, & F_{N1}\sin\theta - F = 0 \end{cases} {∑Fx=0,∑Fy=0,FN2−FN1cosθ=0FN1sinθ−F=0
解上述两式可得:
F N 1 = F sin θ , F N 2 = F cot θ F_{N1} = \frac{F}{\sin\theta}, \quad F_{N2} = F\cot\theta FN1=sinθF,FN2=Fcotθ
最合理的情况是两杆同时达到许用应力值,即:
σ 1 = F N 1 A 1 = [ σ ] , σ 2 = F N 2 A 2 = [ σ ] \sigma_1 = \frac{F_{N1}}{A_1} = [\sigma], \quad \sigma_2 = \frac{F_{N2}}{A_2} = [\sigma] σ1=A1FN1=[σ],σ2=A2FN2=[σ]
将 F N 1 F_{N1} FN1、 F N 2 F_{N2} FN2 表达式代入上式,可得 B D BD BD、 B C BC BC 杆的截面面积分别为:
A 1 = F sin θ [ σ ] , A 2 = F cot θ [ σ ] A_1 = \frac{F}{\sin\theta [\sigma]}, \quad A_2 = \frac{F\cot\theta}{[\sigma]} A1=sinθ[σ]F,A2=[σ]Fcotθ
结构的体积为:
V = A 1 L 1 + A 2 L 2 = F l sin θ [ σ ] cos θ + F l cos θ sin θ [ σ ] = F l [ σ ] ( 1 + cos 2 θ sin θ cos θ ) = F l [ σ ] ( sin 2 θ + 2 cos 2 θ sin θ cos θ ) = F l [ σ ] ( tan θ + 2 cot θ ) \begin{align*} V &= A_1 L_1 + A_2 L_2 \\ &= \frac{Fl}{\sin\theta [\sigma] \cos\theta} + \frac{Fl\cos\theta}{\sin\theta [\sigma]} \\ &= \frac{Fl}{[\sigma]} \left( \frac{1 + \cos^2\theta}{\sin\theta \cos\theta} \right) \\ &= \frac{Fl}{[\sigma]} \left( \frac{\sin^2\theta + 2\cos^2\theta}{\sin\theta \cos\theta} \right) \\ &= \frac{Fl}{[\sigma]} (\tan\theta + 2\cot\theta) \end{align*} V=A1L1+A2L2=sinθ[σ]cosθFl+sinθ[σ]Flcosθ=[σ]Fl(sinθcosθ1+cos2θ)=[σ]Fl(sinθcosθsin2θ+2cos2θ)=[σ]Fl(tanθ+2cotθ)
对体积 V V V 求导,体积最小的条件是:
d V d θ = F l [ σ ] ( 1 cos 2 θ − 2 sin 2 θ ) = F l [ σ ] ( sin 2 θ − 2 cos 2 θ sin 2 θ cos 2 θ ) = 0 \frac{dV}{d\theta} = \frac{Fl}{[\sigma]} \left( \frac{1}{\cos^2\theta} - \frac{2}{\sin^2\theta} \right) = \frac{Fl}{[\sigma]} \left( \frac{\sin^2\theta - 2\cos^2\theta}{\sin^2\theta \cos^2\theta} \right) = 0 dθdV=[σ]Fl(cos2θ1−sin2θ2)=[σ]Fl(sin2θcos2θsin2θ−2cos2θ)=0
解上式得:
2 cos 2 θ − sin 2 θ = 0 ⟹ tan 2 θ = 2 ⟹ θ = 54. 7 ∘ 2\cos^2\theta - \sin^2\theta = 0 \implies \tan^2\theta = 2 \implies \theta = 54.7^\circ 2cos2θ−sin2θ=0⟹tan2θ=2⟹θ=54.7∘
所以,使杆系使用材料最省的夹角为 θ = 54. 7 ∘ \theta = 54.7^\circ θ=54.7∘。