当前位置: 首页 > news >正文

ASFF:Learning Spatial Fusion for Single-Shot Object Detection

一、论文核心

在特征金字塔(FPN)中加入自适应结构特征融合模块,使其自适应地学习每个尺度特征图的融合空间权重

二、网络结构

其代码实现如下:

def add_conv(in_ch, out_ch, ksize, stride, leaky=True):
    """
    Add a conv2d / batchnorm / leaky ReLU block.
    Args:
        in_ch (int): number of input channels of the convolution layer.
        out_ch (int): number of output channels of the convolution layer.
        ksize (int): kernel size of the convolution layer.
        stride (int): stride of the convolution layer.
    Returns:
        stage (Sequential) : Sequential layers composing a convolution block.
    """
    stage = nn.Sequential()
    pad = (ksize - 1) // 2
    stage.add_module('conv', nn.Conv2d(in_channels=in_ch,
                                       out_channels=out_ch, kernel_size=ksize, stride=stride,
                                       padding=pad, bias=False))
    stage.add_module('batch_norm', nn.BatchNorm2d(out_ch))
    if leaky:
        stage.add_module('leaky', nn.LeakyReLU(0.1))
    else:
        stage.add_module('relu6', nn.ReLU6(inplace=True))
    return stage


class ASFF(nn.Module):
    def __init__(self, level, rfb=False, vis=False):
        super(ASFF, self).__init__()
        self.level = level
        self.dim = [512, 256, 256]
        self.inter_dim = self.dim[self.level]
        if level==0:
            self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 1024, 3, 1)
        elif level==1:
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 512, 3, 1)
        elif level==2:
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)

        compress_c = 8 if rfb else 16  #when adding rfb, we use half number of channels to save memory

        self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0)
        self.vis= vis


    def forward(self, x_level_0, x_level_1, x_level_2):
        if self.level==0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)

        elif self.level==1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized =x_level_1
            level_2_resized =self.stride_level_2(x_level_2)
        elif self.level==2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')
            level_1_resized =F.interpolate(x_level_1, scale_factor=2, mode='nearest')
            level_2_resized =x_level_2

        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)
        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+\
                            level_1_resized * levels_weight[:,1:2,:,:]+\
                            level_2_resized * levels_weight[:,2:,:,:]

        out = self.expand(fused_out_reduced)

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out

三、参考内容

ASFF:Learning Spatial Fusion for Single-Shot Object Detection

GitHub - GOATmessi8/ASFF: yolov3 with mobilenet v2 and ASFF

相关文章:

  • 蓝桥杯 积木画
  • llama源码学习·model.py[3]ROPE旋转位置编码(4)ROPE的应用
  • Python八字排盘系统实现分析
  • flutter报错:Could not find com.meituan.android.walle:plugin
  • centos7.9 脚本一键升级到openssl-3.4.0,openssh-9.9p1
  • JSON 解析中需要清理的危险字符
  • 解析Collections工具类主要功能
  • css实现报警特效
  • 计算机技术系列博客——目录页(持续更新)
  • UVM stop_sequences详细介绍与举例(含代码示例与注意事项)
  • 【初探数据结构】树与二叉树
  • Java 反射机制
  • 织梦DedeCMS如何获得在列表和文章页获得顶级或上级栏目名称
  • Filter Solutions学习-02 【高级设计】界面介绍
  • AI图像理解技术的演进
  • AI日报 - 2025年3月21日
  • PyTorch深度学习框架60天进阶学习计划-第27天:模型量化原理(一)
  • Web-Machine-N7靶机通关攻略
  • Web-Machine-N7靶机:渗透测试与漏洞挖掘的实战利器
  • 【从古生物代谢到硅基计算:解码技术加速的深层密码
  • 武汉警方通报一起故意伤害案件:1人死亡,嫌疑人已被抓获
  • 4月份国民经济顶住压力稳定增长
  • 上海百年龙华码头开启新航线,弥补浦江游览南段空缺
  • 波兰总统选举第一轮投票结束,出口民调显示将进入第二轮投票
  • 以色列在加沙发起新一轮强攻,同步与哈马斯展开“无条件谈判”
  • 义乌至迪拜“铁海快线+中东快航”首发,物流成本降低18%