当前位置: 首页 > news >正文

寄生虫仿生算法:基于寄生虫特征的算法设计

寄生虫仿生算法:基于寄生虫特征的算法设计
基于寄生虫行为特征的仿生算法设计

import random
import numpy as np


class EnhancedPBOA:
    def __init__(self, host_env, max_generations, population_size=50):
        self.host_env = host_env
        self.max_generations = max_generations
        self.population_size = population_size
        self.population = self.initialize_population()
        self.adaptive_mutation_rate = 0.2
        self.fitness_history = []

    def initialize_population(self):
        return [self.create_individual() for _ in range(self.population_size)]

    def create_individual(self):
        return [random.uniform(self.host_env['min'], self.host_env['max'])
                for _ in range(self.host_env['dimension'])]

    def mutate(self, parent, rate):
        child = parent.copy()
        if random.random() < rate:
            idx = random.randint(0, len(child) - 1)
            delta = random.gauss(0, 0.1)
            child[idx] = np.clip(child[idx] + delta,
                                 self.host_env['min'],
                                 self.host_env['max'])
        return child

    def hyper_reproduction(self, feasible_solutions, mutation_rate):
        offspring = []
        for parent in feasible_solutions:
            for _ in range(3):  # 每个父代生成3个子代(模拟高繁殖率)
                child = self.mutate(parent, mutation_rate)
                offspring.append(child)
        return offspring

    def update_mutation_rate(self, gen):
        return max(0.05, 0.2 - (gen / self.max_generations) * 0.15)

    def stagnation_detected(self):
        if len(self.fitness_history) < 5:
            return False
        recent = self.fitness_history[-5:]
        return np.std(recent) < 1e-4

    def switch_host_domain(self):
        elite_size = int(0.1 * self.population_size)
        elites = sorted(self.population, key=lambda x: self.objective_function(x), reverse=True)[:elite_size]
        self.host_env['min'] *= 0.9
        self.host_env['max'] *= 1.1
        self.population = elites + [self.create_individual() for _ in range(self.population_size - elite_size)]

    def calculate_energy_efficiency(self, individual):
        return self.objective_function(individual) / self.resource_usage(individual)

    def select_by_efficiency(self, offspring, efficiencies):
        threshold = np.mean(efficiencies) - 0.5 * np.std(efficiencies)
        selected = [ind for ind, eff in zip(offspring, efficiencies) if eff >= threshold]
        return selected[:self.population_size]

    def objective_function(self, individual):
        return -np.sum([x ** 2 - 10 * np.cos(2 * np.pi * x) for x in individual])

    def resource_usage(self, individual):
        return len(individual)

    def evolve(self):
        for gen in range(self.max_generations):
            self.adaptive_mutation_rate = self.update_mutation_rate(gen)

            # 宿主适应与筛选
            feasible = [ind for ind in self.population
                        if all(self.host_env['min'] <= x <= self.host_env['max'] for x in ind)]

            # 繁殖扩散,子代生成
            offspring = self.hyper_reproduction(feasible, self.adaptive_mutation_rate)

            # 资源掠夺能效评估与选择
            efficiencies = [self.calculate_energy_efficiency(ind) for ind in offspring]
            self.population = self.select_by_efficiency(offspring, efficiencies)

            # 记录适应度历史
            current_best = max([self.objective_function(ind) for ind in self.population])
            self.fitness_history.append(current_best)

            # 宿主切换
            if self.stagnation_detected():
                self.switch_host_domain()

相关文章:

  • c语言整理
  • 重塑音乐未来:张漾斌引领漫寻音乐的颠覆之旅
  • STL标准库
  • 外星人入侵-Python-三
  • 结构型模式之组合模式:让对象构成树形结构
  • AtCoder Beginner Contest 004(A - 流行、B - 回転、C - 入れ替え、D - マーブル)题目翻译
  • Keepalived高可用架构实战:从安装配置到高级应用详解
  • 打包当前Ubuntu镜像 制作Ubuntu togo系统
  • Oracle SQL*Loader 与 SQLULDR2 学习指南
  • 服务器部署RocketMQ----Docker方式
  • LLM后训练:解锁大型语言模型推理能力的关键路径
  • 软件测试之单元测试unittest库使用、参数化、unittestteport
  • Java中的volatile关键字
  • AI自动文献综述——python先把知网的文献转excel
  • 免费高质量贴图(Textures) 网站推荐
  • RabbitMq C++客户端的使用
  • DeepSeek大模型在政务服务领域的应用
  • 四种 No-SQL
  • 应急响应靶机练习-Linux2
  • 手搓智能音箱——语音识别及调用大模型回应
  • 有企业信息的网站/湖南seo优化哪家好
  • 营销型网站建设比较好/上海谷歌seo公司
  • 青海医院网站建设公司/百度登录入口
  • 做外贸的网站怎么建立/哪里可以代写软文
  • 哈 做网站/seo网站快速整站优化技术
  • 电商支付网站建设费进什么科目/google play官网