2025大学生数学竞赛1-2(非数学类)
2.
步骤一:设常数简化函数
设 A=∫01f(x)dxA = \int_{0}^{1} f(x) dxA=∫01f(x)dx,则原函数
f(x)=x3+x2limx→0f(x)x−Ax. f(x) = x^3 + x^2 \lim_{x \to 0} \frac{f(x)}{x} - A x. f(x)=x3+x2x→0limxf(x)−Ax.
步骤二:分析极限 limx→0f(x)x\lim_{x \to 0} \frac{f(x)}{x}limx→0xf(x) 的存在性
因为 limx→0f(x)x\lim_{x \to 0} \frac{f(x)}{x}limx→0xf(x) 存在,所以 limx→0f(x)=0\lim_{x \to 0} f(x) = 0limx→0f(x)=0。
将 x=0x = 0x=0 代入 f(x)=x3+x2limx→0f(x)x−Axf(x) = x^3 + x^2 \lim_{x \to 0} \frac{f(x)}{x} - A xf(x)=x3+x2limx→0xf(x)−Ax,可得 f(0)=0f(0) = 0f(0)=0,验证了 limx→0f(x)=0\lim_{x \to 0} f(x) = 0limx→0f(x)=0 的合理性。
步骤三:计算极限 limx→0f(x)x\lim_{x \to 0} \frac{f(x)}{x}limx→0xf(x)
对 limx→0f(x)x\lim_{x \to 0} \frac{f(x)}{x}limx→0xf(x) 进行计算:
limx→0f(x)x=limx→0(x2+xlimx→0f(x)x−A). \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left( x^2 + x \lim_{x \to 0} \frac{f(x)}{x} - A \right). x→0limxf(x)=x→0lim(x2+xx→0limxf(x)−A).
设 B=limx→0f(x)xB = \lim_{x \to 0} \frac{f(x)}{x}B=limx→0xf(x),则上式变为
B=limx→0(x2+xB−A). B = \lim_{x \to 0} (x^2 + x B - A). B=x→0lim(x2+xB−A).
当 x→0x \to 0x→0 时,x2→0x^2 \to 0x2→0,xB→0x B \to 0xB→0,所以
B=−A. B = -A. B=−A.
步骤四:确定 f(x)f(x)f(x) 的表达式
将 B=−AB = -AB=−A 代入 f(x)=x3+x2limx→0f(x)x−Axf(x) = x^3 + x^2 \lim_{x \to 0} \frac{f(x)}{x} - A xf(x)=x3+x2limx→0xf(x)−Ax,可得
f(x)=x3−Ax2−Ax. f(x) = x^3 - A x^2 - A x. f(x)=x3−Ax2−Ax.
步骤五:计算常数 AAA
对 f(x)=x3−Ax2−Axf(x) = x^3 - A x^2 - A xf(x)=x3−Ax2−Ax 在 [0,1][0,1][0,1] 上积分:
\begin{align*}
A &= \int_{0}^{1} (x^3 - A x^2 - A x) dx
&= \left[ \frac{1}{4} x^4 - \frac{A}{3} x^3 - \frac{A}{2} x^2 \right]_0^1
&= \frac{1}{4} - \frac{A}{3} - \frac{A}{2}.
\end{align*}
整理方程:
\begin{align*}
A + \frac{A}{3} + \frac{A}{2} &= \frac{1}{4}
\frac{6A + 2A + 3A}{6} &= \frac{1}{4}
\frac{11A}{6} &= \frac{1}{4}
A &= \frac{3}{22}.
\end{align*}
步骤六:求出 f(x)f(x)f(x)
将 A=322A = \frac{3}{22}A=223 代入 f(x)=x3−Ax2−Axf(x) = x^3 - A x^2 - A xf(x)=x3−Ax2−Ax,得到
f(x)=x3−322x2−322x. f(x) = x^3 - \frac{3}{22} x^2 - \frac{3}{22} x. f(x)=x3−223x2−223x.
综上,最终答案为:
f(x)=x3−322x2−322x. \boxed{f(x) = x^3 - \frac{3}{22} x^2 - \frac{3}{22} x}. f(x)=x3−223x2−223x.
