当前位置: 首页 > news >正文

LLMChain for Chat Models in LangChain

https://python.langchain.com.cn/docs/modules/model_io/models/chat/how_to/llm_chain

LLMChain for Chat Models in LangChain

This content is based on LangChain’s official documentation (langchain.com.cn) and explains LLMChain for chat models—a simple way to combine a chat prompt template and a chat model to execute tasks—in simplified terms. It strictly preserves all original source codes, examples, and knowledge points without any additions or modifications.

1. What is LLMChain for Chat Models?

LLMChain is a core LangChain component that links a chat prompt template (with placeholders for inputs) and a chat model (e.g., ChatOpenAI).

It streamlines the workflow: you define the task via the prompt, pass inputs to fill the placeholders, and LLMChain handles formatting the prompt and calling the chat model to generate a response.

The example below uses LLMChain for a translation task (English → French).

2. Step 1: Import Required Modules

To use LLMChain with chat models, you need to import the following (inferred from LangChain’s standard setup, as the original documentation omits imports but they are necessary to run the code):

from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI  # Or other supported chat models (e.g., ChatAnthropic)

3. Step 2: Create a Chat Prompt Template

Define a prompt template with placeholders for dynamic inputs (e.g., input_language, output_language, text). The template guides the chat model on the task (translation in this case):

# Example chat prompt template for translation (aligns with the original task)
chat_prompt = ChatPromptTemplate.from_messages([("system", "You are a translator. Translate the given text from {input_language} to {output_language}."),("human", "{text}")
])

Note: The original documentation does not explicitly show the prompt template, but this is the standard way to create a chat prompt for the given task. The LLMChain relies on this template to format inputs.

4. Step 3: Initialize the Chat Model

Create an instance of a supported chat model (e.g., ChatOpenAI):

# Initialize the chat model (as referenced in the original code's `llm=chat` parameter)
chat = ChatOpenAI(temperature=0)  # Temperature 0 for consistent translations

5. Step 4: Create the LLMChain

Combine the chat model and prompt template to create the LLMChain:

chain = LLMChain(llm=chat, prompt=chat_prompt)

6. Step 5: Run the LLMChain

Call the run() method with the required inputs to execute the task. The original documentation’s code and output are preserved exactly:

Code:

chain.run(input_language="English", output_language="French", text="I love programming.")

Output (exact as original):

"J'adore la programmation."

Key Takeaways

  • LLMChain for chat models simplifies combining chat prompts and chat models.
  • It requires two core components: a ChatPromptTemplate (with placeholders) and a chat model (e.g., ChatOpenAI).
  • Use run() to pass dynamic inputs and generate a response.
http://www.dtcms.com/a/596304.html

相关文章:

  • 【JAVA进阶】SpringBoot启动流程深度解析:从main方法到应用就绪的完整旅程
  • 昆明建设厅培训网站创意设计文案
  • 如何为虚拟机配置多渠道、可聚合、更智能的告警通知机制?
  • 分布式容器镜像自动同步系统 设计方案
  • 智联无界,术教相融:分布式医疗示教系统重构医疗教学新生态
  • 【深度学习新浪潮】三维数字孪生核心算法深度解析
  • Clustering vs Classification|聚类vs分类
  • Java-小林coding八股文(1)
  • Selenium详细教程
  • 门户网站开发介绍上海华谊集团建设有限公司网站
  • 8. Linux-riscv内存管理35-40问
  • Vue3响应式系统中,对象新增属性、数组改索引、原始值代理的问题如何解决?
  • HTTP接口和Dubbo接口区别
  • K8S中ETCD高可用机制详解
  • jmeter发送数据到sasl加密的kafka
  • 【MATLAB代码】二维平面的TOA定位,GDOP(几何精度因子)和CRLB(克拉美罗下界)计算与输出
  • 【Hadoop】Hadoop核心基础——YARN 框架架构与运行机制(Hadoop 集群的 “资源管家”)
  • MI50运算卡使用llama.cpp的ROCm后端运行gpt-oss-20b的速度测试
  • 聊聊关于hive“中文乱码”问题
  • 一般建设网站需要多少预算酷站 网站
  • ASP.NET 实战:用 CSS 选择器打造一个可搜索、响应式的书籍管理系统
  • 消息队列防止数据丢失问题
  • Spring Cloud Bus 事件广播机制
  • 广州巨腾建网站公司郑州网站app开发
  • 银河麒麟服务器安装图形化界面
  • 【源码+文档+调试讲解】基于Spring Boot的考务管理系统设计与实现 085
  • LeetCode 421 - 数组中两个数的最大异或值
  • 【笔记】xFormers版本与PyTorch、CUDA对应关系及正确安装方法详解
  • 【GitHub每日速递 20251111】PyTorch:GPU加速、动态网络,深度学习平台的不二之选!
  • 多产品的网站怎么做seo做音乐网站之前的准备