当前位置: 首页 > news >正文

江苏省建设厅网站公示腾讯企业邮箱注册申请官网

江苏省建设厅网站公示,腾讯企业邮箱注册申请官网,网站设计网络推广,东莞个人免费建网站常见基模型 1. 线性模型(Linear Models) 特点:通过线性组合特征进行预测,适合处理线性关系。常见类型: 线性回归(Linear Regression)逻辑回归(Logistic Regression)岭回…

常见基模型


1. 线性模型(Linear Models)

  • 特点:通过线性组合特征进行预测,适合处理线性关系。
  • 常见类型
    • 线性回归(Linear Regression)
    • 逻辑回归(Logistic Regression)
    • 岭回归(Ridge Regression)
    • Lasso 回归(Lasso Regression)
  • 适用场景:特征与目标变量之间存在线性关系,且数据维度较高时。

2. 支持向量机(Support Vector Machines, SVM)

  • 特点:通过寻找最大间隔超平面进行分类或回归。
  • 常见类型
    • 线性 SVM(Linear SVM)
    • 核 SVM(Kernel SVM,如 RBF 核、多项式核)
  • 适用场景:适合高维数据和小样本数据,尤其是分类任务。

3. 神经网络(Neural Networks)

  • 特点:通过多层非线性变换拟合复杂函数。
  • 常见类型
    • 多层感知机(MLP)
    • 卷积神经网络(CNN)
    • 循环神经网络(RNN)
    • Transformer
  • 适用场景:适合处理非线性关系和高维数据,尤其是图像、文本、语音等复杂数据。

4. 朴素贝叶斯(Naive Bayes)

  • 特点:基于贝叶斯定理,假设特征之间相互独立。
  • 常见类型
    • 高斯朴素贝叶斯(Gaussian Naive Bayes)
    • 多项式朴素贝叶斯(Multinomial Naive Bayes)
    • 伯努利朴素贝叶斯(Bernoulli Naive Bayes)
  • 适用场景:适合文本分类、垃圾邮件过滤等高维稀疏数据。

5. K 近邻(K-Nearest Neighbors, KNN)

  • 特点:基于距离度量,通过邻居的标签进行预测。
  • 适用场景:适合低维数据和小样本数据,尤其是分类任务。

6. 决策树(Decision Trees)

  • 特点:通过递归分割特征空间构建树结构。
  • 常见类型
    • CART(Classification and Regression Tree)
    • ID3(Iterative Dichotomiser 3)
    • C4.5(改进的 ID3)
  • 适用场景:适合处理非线性关系,且模型可解释性要求较高时。

7. 随机森林(Random Forest)

  • 特点:通过集成多棵决策树进行预测,减少过拟合。
  • 适用场景:适合处理高维数据和非线性关系,且对模型稳定性要求较高时。

8. 梯度提升树(Gradient Boosting Trees)

  • 特点:通过逐步添加树模型拟合残差,优化目标函数。
  • 常见类型
    • XGBoost
    • LightGBM
    • CatBoost
  • 适用场景:适合处理结构化数据,且对模型性能要求较高时。

9. 高斯过程(Gaussian Processes)

  • 特点:通过高斯分布建模目标变量的分布。
  • 适用场景:适合小样本数据和回归任务,尤其是需要不确定性估计时。

10. 贝叶斯网络(Bayesian Networks)

  • 特点:通过概率图模型表示变量之间的依赖关系。
  • 适用场景:适合处理不确定性和复杂依赖关系的数据。

11. 聚类模型(Clustering Models)

  • 特点:通过无监督学习将数据分为若干簇。
  • 常见类型
    • K-Means
    • 层次聚类(Hierarchical Clustering)
    • DBSCAN
  • 适用场景:适合无监督学习任务,如客户分群、异常检测等。

12. 主成分分析(Principal Component Analysis, PCA)

  • 特点:通过线性变换将高维数据降维。
  • 适用场景:适合数据降维和可视化,尤其是高维数据。

13. 隐马尔可夫模型(Hidden Markov Models, HMM)

  • 特点:通过状态转移和观测概率建模序列数据。
  • 适用场景:适合处理时间序列数据,如语音识别、自然语言处理等。

14. 因子分析(Factor Analysis)

  • 特点:通过潜在变量解释观测变量之间的相关性。
  • 适用场景:适合降维和探索性数据分析。

15. 混合模型(Mixture Models)

  • 特点:通过多个概率分布的混合建模数据。
  • 常见类型
    • 高斯混合模型(Gaussian Mixture Models, GMM)
    • 隐狄利克雷分布(Latent Dirichlet Allocation, LDA)
  • 适用场景:适合聚类和生成模型任务。

总结

基模型一般包括:

  1. 线性模型(如线性回归、逻辑回归)
  2. 支持向量机(SVM)
  3. 神经网络(如 MLP、CNN、RNN)
  4. 朴素贝叶斯
  5. K 近邻(KNN)
  6. 决策树(如 ID3、C4.5)
  7. 随机森林
  8. 梯度提升树(如 XGBoost、LightGBM)
  9. 高斯过程
  10. 贝叶斯网络
  11. 聚类模型(如 K-Means、DBSCAN)
  12. 主成分分析(PCA)
  13. 隐马尔可夫模型(HMM)
  14. 因子分析
  15. 混合模型(如 GMM、LDA)

决策树(Decision Tree)

决策树(Decision Tree) 是一种常用的机器学习算法,既可以用于分类任务,也可以用于回归任务。它的核心思想是通过递归地划分特征空间,构建一棵树结构来对数据进行预测。决策树因其直观、易于理解和解释的特点,被广泛应用于各种领域。


1. 决策树的基本概念

  • 树结构
    • 决策树由节点(Node)和边(Edge)组成。
    • 根节点:树的起始点,包含所有样本。
    • 内部节点:表示一个特征或属性的测试条件。
    • 叶子节点:表示最终的预测结果(分类标签或回归值)。

2. 决策树的构建过程

(1)选择最佳分裂特征
  • 决策树的核心是如何选择最佳特征进行分裂。
  • 常用的分裂准则包括:
    • 信息增益(Information Gain):选择使信息增益最大的特征。
      • 信息增益 = 父节点的熵 - 子节点的加权平均熵。
    • 信息增益比(Gain Ratio):对信息增益进行归一化,避免偏向取值较多的特征。
    • 基尼指数(Gini Index):选择使基尼指数最小的特征。
      • 基尼指数表示数据的不纯度,值越小表示纯度越高。
(2)递归分裂
  • 对每个子节点重复上述过程,直到满足停止条件。
  • 常见的停止条件包括:
    • 节点中的样本全部属于同一类。
    • 树的深度达到预设的最大值。
    • 节点中的样本数少于预设的最小值。

3. 决策树的类型

(1)分类树(Classification Tree)
  • 用于分类任务,叶子节点输出类别标签。
  • 常用算法:
    • ID3(Iterative Dichotomiser 3):使用信息增益作为分裂准则。
    • C4.5:使用信息增益比作为分裂准则。
    • CART(Classification and Regression Tree):使用基尼指数作为分裂准则。
(2)回归树(Regression Tree)
  • 用于回归任务,叶子节点输出连续值。
  • 常用算法:
    • CART:通过最小化均方误差(MSE)选择最佳分裂点。
http://www.dtcms.com/a/593615.html

相关文章:

  • 本地部署 Stable Diffusion3.5!cpolar让远程访问很简单!
  • UE_ControllRig交互
  • Swift-snapKit使用
  • Hello-Agents第二章深度解析:智能体的进化之路——从符号逻辑到AI原生
  • 51单片机汇编实现DHT11读取温湿度
  • LiveCharts.Wpf 控件的使用
  • 柔性软风管-测量统计一键出量
  • 告别手动录财报!财务报表OCR识别解决方案选型指南
  • (128页PPT)智慧化工厂区一体化管理平台建设方案(附下载方式)
  • jsp网站建设项目实战总结怎么做网站统计
  • 【Rust 探索之旅】Rust 全栈 Web 开发实战:从零构建高性能实时聊天系统
  • 【Rust 探索之旅】Tokio 异步运行时完全指南:深入理解 Rust 异步编程与源码实现
  • 个人网站做经营性crm销售管理系统功能
  • Ubuntu 22.04 Docker 安装指南
  • C++基础语法篇二 ——引用、内联和空指针
  • 有没有做兼职的好网站十堰网络公司排名
  • vscode中claude code插件代理地址设置
  • 网页制作与网站管理在线销售管理系统
  • 如何使用 vxe-table 实现右键菜单异步权限控制
  • 11月10日学习总结--初识numpy
  • 前后端通信加解密(Web Crypto API )
  • 基于数字图像相关(DIC)技术的机械臂自动化焊接残余应力全场变形高精度测量
  • XTOM-TRANSFORM-ROB:面向大尺寸构件的移动式非接触三维扫描与自动化质量检测
  • PyWinInspect:pywinauto 桌面自动化开发伴侣,集成 Inspect 元素检查 + 定位代码自动生成,效率大提升!
  • 个人做什么网站软件技术专升本难吗
  • HarmonyOS:ArkUI栅格布局系统(GridRow/GridCol)
  • 电商设计师常用的网站wordpress 获取分类地址
  • 开放签电子签章系统3.2版本更新内容
  • 电子商务的网站建设过程辽宁沈阳网站建设
  • C++ 设计模式《统计辅助功能》