当前位置: 首页 > news >正文

考研数一非数竞赛复习之Stolz定理求解数列极限

        

        在非数类大学生数学竞赛中,Stolz定理作为一种强大的工具,经常被用来解决和式数列极限的问题,也被誉为离散版的’洛必达’方法,它提供了一种简洁而有效的方法,使得原本复杂繁琐的极限计算过程变得直观明了。本文,我们将通过几个例题介绍该定理的使用方法。

stolz定理

        设数列\left \{ a_n \right \},\left \{ b_n \right \}满足:\left \{ b_n \right \}严格单调递增

        且\lim_{n\to\infty}\left \{ b_n \right \}=\infty

        若\lim_{n\to\infty}\frac{a_n-a_n-1}{b_n-b_n-1}=L

        则\lim_{n\to\infty}\frac{a_n}{b_n}=L

        定理看起来非常简单易懂,且该定理与洛必达公式形似。洛必达公式描述的是函数的导数的极限与原函数的极限之间的关系,该定理描述的是数列差分后的极限与原数列极限之间的关系。

 例题


1.\lim_{n\to0}\frac{1+\sqrt{2}+\sqrt[3]{3}+...\sqrt[n]{n}}{n}

解:设a_n=1+\sqrt{2}+\sqrt[3]{3}+...\sqrt[n]{n},b_n=n

     a_n=\sum_{k=1}^{n}\sqrt[k]{k}

     a_{n-1}=\sum_{k=1}^{n-1}\sqrt[k]{k}

     a_n-a_{n-1}=\sqrt[n]{n}

     b_n-b_{n-1}=n-(n-1)=1

    设L=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=\lim_{n\to\infty}\frac{\sqrt[n]{n}}{1}

     则L=\lim_{n\to\infty}e^{\frac{\ln n}{n}}=e^{\lim_{n\to\infty}\frac{\ln n}{n}}

     L=e^{0}=1

那么,原式极限结果为1


2.\lim_{n\to\infty}\frac{1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}}{\sqrt{n+1}+\sqrt{n+2}+...\sqrt{n+n}}

解: 设a_n=1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}=\sum_{k=1}^{n}\sqrt{k}

     a_{n-1}=\sum_{k=1}^{n-1}\sqrt{k}

     b_n=\sqrt{n+1}+\sqrt{n+2}+...\sqrt{n+n}

 (b_n每一项内第一个n与其下标一致)

注意,对于b_n来说,经过观察我们不难发现b_{n-1}不单单意味着原数列的前n-1项,同时我们还应该将b_n每一项内第一个n更改为n-1。即b_{n-1}=\sum_{k=1}^{n-1}\sqrt{n-1+k}

      b_{n-1}=\sqrt{n-1+1}+\sqrt{n-1+2}+...+\sqrt{n-1+n-1}

      则a_n-a_{n-1}=\sqrt{n}

      b_n-b_{n-1}=\sqrt{2n}+\sqrt{2n-1}-\sqrt{n}

     L=\lim_{n\to\infty}\frac{a_{n-1}}{b_{n-1}}=\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{2n-1}+\sqrt{2n}-\sqrt{n}}

利用'抓大头'思想不难得到L=\frac{1}{2\sqrt{2}-1}

 那么,原式极限结果=\frac{1}{2\sqrt{2}-1}


3.\lim_{n\to\infty}n\begin{pmatrix} \sum_{k=1}^{n}\frac{1}{n+k}-ln2 \end{pmatrix}

原式=\lim_{n\to\infty}\frac{\begin{pmatrix} \sum_{k=1}^{n}\frac{1}{n+k}-ln2 \end{pmatrix}}{\frac{1}{n}}

a_n=\sum_{k=1}^{n}\frac{1}{n+k},b_n=\frac{1}{n}

L=\lim_{n\to\infty}\frac{a_{n-1}}{b_{n-1}}

L=\lim_{n\to\infty}\frac{\sum_{k=1}^{n}\frac{1}{n+k}-ln2-\sum_{k=1}^{n-1}\frac{1}{n-1+k}+ln2}{\frac{1}{n}-\frac{1}{n-1}}

L=lim_{n\to\infty}\frac{\frac{1}{2n}+\frac{1}{2n-1}-\frac{1}{n}{}}{\frac{-1}{n(n-1)}}

L=\lim_{n\to\infty}\frac{-n(n+1)}{(2n-1)(2n)}

利用'抓大头'思想不难得到L=-\frac{1}{4}

那么原式极限结果为-\frac{1}{4}

总结

        使用stolz定理求解数列极限,特别是和式极限时一定要化简至\frac{a_n}{b_n}的形式,并且在计算

\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}时要格外注意数列差分结果的计算,不要只是简单的将n-1带入(特别是和式极限)

        拿不准可以多展开几项,观察数列通项。

        以上便是使用stolz定理求解数列极限时所有需要注意的地方,看完这篇文章,我相信你又将掌握一个求极限的利器。

相关文章:

  • 关于AI数据分析可行性的初步评估
  • SQLAlchemy系列教程:如何防止SQL注入
  • Mysql表的复合查询
  • MongoDB(一) - MongoDB安装教程(Windows + Linux)
  • Qt中实现多个QMainWindow同时显示
  • Spring MVC笔记
  • 记录小白使用 Cursor 开发第一个微信小程序(二):创建项目、编译、预览、发布(250308)
  • 计算机毕业设计SpringBoot+Vue.js餐饮管理系统(源码+文档+PPT+讲解)
  • AutoGen学习笔记系列(八)Advanced - Custom Agents
  • android13打基础: 保存用户免得下次重新登录逻辑
  • 红日靶场(一)——个人笔记
  • C++ MySQL 常用接口(基于 MySQL Connector/C++)
  • red hat系统离线部署Deepseek
  • 文本处理Bert面试内容整理-BERT的应用场景有哪些?
  • SpringBoot集成MQ,四种交换机的实例
  • nginx部署问题
  • 【RocketMQ】二、架构与核心概念
  • Redis- 大key
  • 【深度学习】宠物品种分类Pet Breeds Classifier
  • uniapp+node+mysql接入deepseek实现流式输出
  • 北京网站建设 都选万维科技/软文价格
  • cms开发是什么意思/江苏seo外包
  • 西安企业网站建设模板/电商平台的推广及运营思路
  • 怎么搭建自己的网站挣钱/离我最近的电脑培训中心
  • 淘宝客网站一定要备案吗/南宁网站seo优化公司
  • 南沙定制型网站建设/如何软件网站优化公司