当前位置: 首页 > news >正文

代码随想录算法训练营第三十二天 | 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯

509. 斐波那契数

力扣题目链接(opens new window)

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

  • 输入:3
  • 输出:2
  • 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

  • 输入:4
  • 输出:3
  • 解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

确定递推公式

为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

dp数组如何初始化

题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;

                  

确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

class Solution {
    public int fib(int n) {
        if (n <= 1) return n;             
        int[] dp = new int[n + 1];
        dp[0] = 0;
        dp[1] = 1;
        for (int index = 2; index <= n; index++){
            dp[index] = dp[index - 1] + dp[index - 2];
        }
        return dp[n];
    }
}

70. 爬楼梯

力扣题目链接(opens new window)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    • 1 阶 + 1 阶
    • 2 阶

示例 2:

  • 输入: 3
  • 输出: 3
  • 解释: 有三种方法可以爬到楼顶。
    • 1 阶 + 1 阶 + 1 阶
    • 1 阶 + 2 阶
    • 2 阶 + 1 阶

 例如   第5阶楼梯是第3楼梯+2和第四楼梯加1,所以dp[i]=dp[i-1]+dp[i-2]

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

 

 746. 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

 

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。这道题其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。所以台阶一共有cost.length+1个

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

// 方式一:第一步不支付费用
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int len = cost.length;
        int[] dp = new int[len + 1];

        // 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0
        dp[0] = 0;
        dp[1] = 0;

        // 计算到达每一层台阶的最小费用
        for (int i = 2; i <= len; i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }

        return dp[len];
    }
}

相关文章:

  • Cryptography 与 PyCryptodome 源码级解析
  • 爬虫逆向:脱壳工具BlackDex的详细使用
  • 发行思考:全球热销榜的频繁变动
  • [UE C++]实现自己的事件分发机制
  • Swift系列02-Swift 数据类型系统与内存模型
  • thinkphp5.1 在fetch模版就超时
  • Spring AI简单使用
  • 【JAVA架构师成长之路】【Spring生态】第1集:Spring生态核心
  • 使用QT + 文件IO + 鼠标拖拽事件 + 线程 ,实现大文件的传输
  • 在 macOS 上使用 CLion 进行 Google Test 单元测试
  • Van Uploader解决Android11及以下系统上传图片无反应问题
  • 【机械视觉】C#+visionPro联合编程———【一、C# + VisionPro 联合编程详解以及如何将visionPro工具加载到winform】
  • Web3 与跨链技术:如何实现不同区块链的互操作性
  • Language Agent Tree Search (1)
  • 春招中护网面试题库
  • Github 2025-03-06 Go开源项目日报 Top10
  • C语言:怎样将一个结构体数据全部清零
  • 【AI深度学习基础】Pandas完全指南进阶篇:解锁高效数据处理高阶技能 (含完整代码)
  • 【VBA】WPS/PPT设置标题字体
  • 50.日常算法
  • 合肥做公司网站公司/招聘seo专员
  • 如何下载ppt免费模板/app关键词优化
  • 做视频写真网站犯法吗/网站维护中
  • 设计师图片素材网站/攀枝花网站seo
  • 专门做鞋子的网站吗/seo文章
  • 创建网站服务器地址/百度登录入口百度