当前位置: 首页 > news >正文

网站首页置顶是怎么做单页展示网站

网站首页置顶是怎么做,单页展示网站,wordpress模板没反应,什么系统做网站最安全通过分析分布式电源对配电网的影响,以有功功率损耗、电压质量及分布式电源总容量为优化目标,基于模糊理论建立了分布式电源在配电网中选址定容的多目标优化模型,并提出了一种改进粒子群算法进行求解。在算例仿真中,基于IEEE-14标准…

       通过分析分布式电源对配电网的影响,以有功功率损耗、电压质量及分布式电源总容量为优化目标,基于模糊理论建立了分布式电源在配电网中选址定容的多目标优化模型,并提出了一种改进粒子群算法进行求解。在算例仿真中,基于IEEE-14标准节点系统,采用MATLAB仿真工具对所提算法进行了测试,证实了所提算法全局搜索能力较强、收敛速度较快,并通过比较分析验证了该模型和算法的可行性及有效性。

 1.含DG的配电网潮流计算

      连接到配电网的 DG所采用的模型既可简化为 PV节点,也可以是PQ节点。本文将其当成具有恒定功率因数的PQ节点,由于DG 的位置一般靠近负荷中心,因此假设DG的位置就在负荷节点上。DG接入负荷节点的模型如下图所示,只需考虑改变接入DG 节点的负载功率变化即可。

       建立了DG接入配电网模型后,便可以根据相应的节点发电负载功率参数和配电网线路参数进行潮流计算,进而得到配电网中各个节点的电压以及功率分布。本文在算例仿真过程中采用牛顿拉夫逊法进行潮流计算,该方法具有良好的线性收敛性能。

2.基于改进粒子群优化算法多目标优化的DG选址定容的流程

3.仿真代码

clc;
clear;
close all;
nbus=14;
V=without_DG_process(nbus);%初始电压
voltval1=V;
%% 设置种群迭代参数
iter_max=100;        %迭代次数    
no_of_pop=100;       %种群数量 
prop_crsval=0.7;    %交叉概率
no_of_crs=2*round(prop_crsval*no_of_pop/2);  prop_mutval=0.3;    %突变概率                          
no_of_mut=round(prop_mutval*no_of_pop);   
mu=0.02;   
sigma=2;
% runpf(case14)
% mpc=case14;
% mpc.branch ;linedt =bus_line_data(14);%% 初始化种群
int_tmp_pop.Position=[];
int_tmp_pop.Cost=[];
int_tmp_pop.Rank=[];
int_tmp_pop.DominationSet=[];
int_tmp_pop.DominatedCount=[];
int_tmp_pop.CrowdingDistance=[];% 拥挤度
%储存每次迭代结果
population_func_data=repmat(int_tmp_pop,no_of_pop,1);
%B = repmat(A,m,n),将矩阵 A 复制 m×n 块,即把 A 作为 B 的元素,B 由 m×n 个 A 平铺而成。B 的维数是 [size(A,1)*m, size(A,2)*n] 。
%% dg位置与容量约束
minval1=1;     %dg位置
maxval1=nbus;  %dg位置,在1-14节点中
minval2=0;     %dg容量
maxval2=50;    %dg容量
no_of_dg=4;    %dg数量%% randsrc函数,无参数形式,随机输出
for locm=1:no_of_pop%产生变量,随机生成dg位置与容量,population_func_data(locm).Position=[randsrc(1,no_of_dg,minval1:maxval1) randsrc(1,no_of_dg,minval2:maxval2)];%计算出随机生成对应位置与容量情况下的目标函数值population_func_data(locm).Cost=feed_power(nbus,population_func_data(locm).Position);end
[population_func_data, rankval]=non_dominate_sorting_process(population_func_data);%% 非支配种群排序过程
population_func_data=cal_crown_dist(population_func_data,rankval);%% 计算种群拥挤度
[population_func_data, rankval]=sort_process(population_func_data);%% 排序过程
%% 迭代
for iter=1:iter_max%% 种群交叉population_cross=repmat(int_tmp_pop,no_of_crs/2,2);%B = repmat(A,m,n),将矩阵 A 复制 m×n 块,即把 A 作为 B 的元素,B 由 m×n 个 A 平铺而成。B 的维数是 [size(A,1)*m, size(A,2)*n] 。for k=1:no_of_crs/2loc1=randi([1 no_of_pop]);loc1_data=population_func_data(loc1);loc2=randi([1 no_of_pop]);loc2_data=population_func_data(loc2);[population_cross(k,1).Position, population_cross(k,2).Position]=cross_over_process(loc1_data.Position,loc2_data.Position,minval1,maxval1,minval2,maxval2);population_cross(k,1).Cost=feed_power(nbus,population_cross(k,1).Position);population_cross(k,2).Cost=feed_power(nbus,population_cross(k,2).Position);endpopulation_cross=population_cross(:);%% 种群变异population_mute=repmat(int_tmp_pop,no_of_mut,1);for k=1:no_of_mutlocm=randi([1 no_of_pop]);data_locm=population_func_data(locm);population_mute(k).Position=mutation_process(data_locm.Position,mu,sigma,minval1,maxval1,minval2,maxval2);population_mute(k).Cost=feed_power(nbus,population_mute(k).Position);end%% 完成筛选population_func_data=[population_func_data;population_cross;population_mute]; [population_func_data, rankval]=non_dominate_sorting_process(population_func_data);population_func_data=cal_crown_dist(population_func_data,rankval);population_func_data=sort_process(population_func_data);population_func_data=population_func_data(1:no_of_pop);[population_func_data, rankval]=non_dominate_sorting_process(population_func_data);population_func_data=cal_crown_dist(population_func_data,rankval);[population_func_data, rankval]=sort_process(population_func_data);resout_final=population_func_data(rankval{1});res1=[resout_final.Cost];plot3(res1(1,:),res1(2,:), res1(3,:),'b*')
xlabel('1网损')
ylabel('2电压稳定性')
zlabel('3容量和')
grid on
hold off
title('目标优化结果')
drawnowend
%% 结果输出
datart=resout_final(end).Position;
%最优变量,位置和容量
DG_LOCATION=datart(1:4)
DG_UNIT_SIZE=datart(5:8)
load resg.mat 
POWER_LOSSES_WITH_DG=POWER_LOSSES
STABILITY_INDEX_WITH_DG=STABILITY_INDEX;%稳定性指数
voltval2=V;
EIGEN_VALUE=diag(d1).';%特征值
%% 画图
figure,plot(1:nbus,voltval1,'p-s','linewidth',2);
hold on,
plot(1:nbus,voltval2,'b-s','linewidth',2);
grid on;
legend('无DG时电压分布','有DG时电压分布');
xlabel('节点');
ylabel('电压幅值/pu');

4.仿真算例与结果分析仿真

      在算例仿真中,基于IEEE-14标准节点系统,采用MATLAB仿真工具对所提算法进行了测试,证实了所提算法全局搜索能力较强、收敛速度较快,并通过比较分析验证了该模型和算法的可行性及有效性。

代码地址:

基于改进粒子群算法的多目标分布式电源选址定容规划

参考论文:

基于改进粒子群算法的多目标分布式电源选址定容规划

http://www.dtcms.com/a/504495.html

相关文章:

  • 微信网页上的网站怎么做的网站响应时间方案
  • ScheduledExecutorService
  • 网站首页新世纪建设集团有限公司长沙网站seo收费
  • 网站优化的论文pc网站建设企业
  • 各个视频网站怎么做原创作者南宁市建筑规划设计集团有限公司
  • 探索Word2Vec:从文本向量化到中文语料处理
  • 性能测试 | 认识性能测试的概念以及应用
  • 小企业网站建设论文东莞网站建设设计
  • 第23讲:文件操作
  • 网站如何不需要备案免费发广告的软件有哪些
  • 网站制作 需要什么网络技术唯品会网站建设特色
  • 如何提高网站点击率dns网站建设
  • 响应式布局的原理网站meta 优化建议
  • 网站建设设计收费网络销售面试问题有哪些
  • mysql8支持远程访问 -mysql5.7支持远程访问
  • DeepSeek+FastGPT+Xinferenc打造企业级知识库
  • 营销型网站费用软件工程35岁就失业吗
  • 开发个网站开票名称是什么意思项目网上备案
  • 2025年-集合类面试题
  • 商城网站静态模板下载安徽安庆天气预报15天
  • 网站任务界面wordpress实例网址
  • Python网络编程调用CnOCR文字识别教程
  • 常熟制作网站的地方广州网页制作
  • 青岛做网站价格关键词排名优化公司
  • 第十九周-训练embedding
  • 何为网站开发如何用cms做网站
  • 2022ICPC区域赛济南站
  • 英文网站建设一般多少钱婚纱摄影图片
  • 家具东莞网站建设技术支持wordpress开启多站点后台没显示
  • 大模型应用开发面经