当前位置: 首页 > news >正文

【论文推导】Tube-based MPC-辅助控制器设计

引言

本文给出了Tube-based MPC-辅助系统控制器设计与稳定性证明的大致过程,以供自己回顾检查。

辅助系统控制器设计

首先建立状态误差方程:
ϵ(k+1)=A~ϵ(k)+B~ϕη(k)+ω(k)(14)\epsilon(k + 1) = \tilde{A}\epsilon(k) + \tilde{B}\phi\eta(k) + \omega(k) \tag{14} ϵ(k+1)=A~ϵ(k)+B~ϕη(k)+ω(k)(14)
其中,ϵ(k)=χ^(k)−ξ^(k)\epsilon(k) = \hat{\chi}(k) - \hat{\xi}(k)ϵ(k)=χ^(k)ξ^(k)为实际系统与标称系统状态之间的误差。

定义切换函数为:
s(k)=Ceϵ(k)(15)s(k) = C_{\text{e}} \epsilon(k) \tag{15} s(k)=Ceϵ(k)(15)
通过延迟估计的方式测量不确定扰动:
ω^(k)=ϵ(k)−A~ϵ(k−1)−B~ϕη(k−1)=ω(k−1)(16)\hat{\omega}(k) = \epsilon(k) - \tilde{A}\epsilon(k - 1) - \tilde{B}\phi\eta(k - 1) = \omega(k - 1) \tag{16} ω^(k)=ϵ(k)A~ϵ(k1)B~ϕη(k1)=ω(k1)(16)
设计滑膜趋近率为如下形式:
s(k+1)=(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))+Ceσ(k)(17)s(k + 1) = (1 - qt)s(k) - \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{sig}^\alpha(s(k)) + C_{\text{e}} \sigma(k) \tag{17} s(k+1)=(1qt)s(k)β+sgn(s(k))λtsigα(s(k))+Ceσ(k)(17)
其中,σ(k)=ω(k)−ω(k−1)\sigma(k) = \omega(k) - \omega(k - 1)σ(k)=ω(k)ω(k1)为扰动误差;sigα(s(k))=∣s(k)∣αsgn(s(k))\text{sig}^\alpha(s(k)) = |s(k)|^\alpha \text{sgn}(s(k))sigα(s(k))=s(k)αsgn(s(k))

将式15带入进式17中推导可得:
s(k+1)=(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))+Ceσ(k)Ce(k+1)=(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))+Ceσ(k)Ce[A~(k)+B~ϕη(k)+ω(k)]=(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))+Ceσ(k)CeB~ϕη(k)=(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))+Ce[ω(k)−ω(k−1)−A~(k)−ω(k)]η(k)=(CeB~ϕ)−1{(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))−Ce[ω(k−1)+A~(k)]}(18)\begin{aligned} s(k + 1) & = (1 - qt)s(k) - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(s(k)) + {C_{\rm{e}}}\sigma (k)\\ {C_{\rm{e}}}(k + 1) & = (1 - qt)s(k) - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(s(k)) + {C_{\rm{e}}}\sigma (k)\\ {C_{\rm{e}}}\left[ {\tilde A(k) + \tilde B\phi \eta (k) + \omega (k)} \right] & = (1 - qt)s(k) - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(s(k)) + {C_{\rm{e}}}\sigma (k)\\ {C_{\rm{e}}}\tilde B\phi \eta (k) & = (1 - qt)s(k) - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(s(k)) + {C_{\rm{e}}}\left[ {\omega (k) - \omega (k - 1) - \tilde A(k) - \omega (k)} \right]\\ \eta (k) & = {\left( {{C_{\rm{e}}}\tilde B\phi } \right)^{ - 1}}\left\{ {(1 - qt)s(k) - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(s(k)) - {C_{\rm{e}}}\left[ {\omega (k - 1) + \tilde A(k)} \right]} \right\} \end{aligned} \tag{18} s(k+1)Ce(k+1)Ce[A~(k)+B~ϕη(k)+ω(k)]CeB~ϕη(k)η(k)=(1qt)s(k)β+sgn(s(k))λtsigα(s(k))+Ceσ(k)=(1qt)s(k)β+sgn(s(k))λtsigα(s(k))+Ceσ(k)=(1qt)s(k)β+sgn(s(k))λtsigα(s(k))+Ceσ(k)=(1qt)s(k)β+sgn(s(k))λtsigα(s(k))+Ce[ω(k)ω(k1)A~(k)ω(k)]=(CeB~ϕ)1{(1qt)s(k)β+sgn(s(k))λtsigα(s(k))Ce[ω(k1)+A~(k)]}(18)

稳定性证明

证明需要包含两部分:

  1. 滑动模式曲面 s k ( )可以在k∗k^*k步数内进入 qSM 区域Ω\OmegaΩ,并无限期地保持在区域内;
  2. ∣s∣|s|s递减。

由式17建立Lyapunov方程:V(k)=s2(k)V(k) = s^2(k)V(k)=s2(k)

则有:

ΔV(k)=V(k+1)−V(k)=s(k+1)2−s(k)2=−(qts(k)+λβ+sgn(s(k))tsigα(s(k))−Ceσ(k))×(2s(k)−qts(k)−λβ+sgn(s(k))tsigα(s(k))+Ceσ(k))(19)\begin{aligned} \Delta V(k) & = V(k + 1) - V(k)\\ & = s{(k + 1)^2} - s{(k)^2}\\ & = - \left( {qts(k) + \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(s(k)) - {C_{\rm{e}}}\sigma (k)} \right)\\ & \times \left( {2s(k) - qts(k) - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(s(k)) + {C_{\rm{e}}}\sigma (k)} \right) \end{aligned} \tag{19} ΔV(k)=V(k+1)V(k)=s(k+1)2s(k)2=(qts(k)+β+sgn(s(k))λtsigα(s(k))Ceσ(k))×(2s(k)qts(k)β+sgn(s(k))λtsigα(s(k))+Ceσ(k))(19)
当滑膜面s(k)s(k)s(k)在区域Ω\OmegaΩ内是稳定的,这里主要考虑s(k)s(k)s(k)在区域Ω\OmegaΩ外的情况,

A=qts(k)+λβ+sgn(s(k))tsigα(s(k))−Ceσ(k)A = qts(k) + \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{sig}^\alpha(s(k)) - C_{\text{e}} \sigma(k)A=qts(k)+β+sgn(s(k))λtsigα(s(k))Ceσ(k)则原式19可重写为ΔV(k)=−A(k)(2s(k)−A(k))\Delta V(k) = - A(k)(2s(k) - A(k))ΔV(k)=A(k)(2s(k)A(k)),此时就需要求解使得ΔV(k)<0\Delta V (k) \lt 0ΔV(k)<0即可,当$s(k) \gt \rho $
λβ+1ts(k)α−Ceσ(k)≥λβ+1ts(k)α−∣Ceσ(k)∣≥λβ+1ts(k)α−σ∗(k)(20)\begin{aligned} \frac{\lambda }{{\beta + 1}}ts{(k)^\alpha } - {C_{\rm{e}}}\sigma (k) & \ge \frac{\lambda }{{\beta + 1}}ts{(k)^\alpha } - \left| {{C_{\rm{e}}}\sigma (k)} \right|\\ & \ge \frac{\lambda }{{\beta + 1}}ts{(k)^\alpha } - {\sigma ^*}(k) \end{aligned} \tag{20} β+1λts(k)αCeσ(k)β+1λts(k)αCeσ(k)β+1λts(k)ασ(k)(20)
其中∣Ceσ(k)∣≤σ∗|C_{\text{e}} \sigma(k)| \leq \sigma^*Ceσ(k)σ,同时当$s(k) \gt \rho 时,可将时,可将时,可将qts(k)忽略,其余的非线性项占主导,且有忽略,其余的非线性项占主导,且有忽略,其余的非线性项占主导,且有\text{sgn}(s(k)) = 1,,\text{sig}^\alpha(s(k)) = s{(k)^\alpha }$。
s(k)>ψ(α)[β+1λtσ∗(k)]1α>[β+1λtσ∗(k)]1α(21)\begin{aligned} s(k) & \gt \psi \left( \alpha \right){\left[ {\frac{{\beta + 1}}{{\lambda t}}{\sigma ^*}(k)} \right]^{\frac{1}{\alpha }}}\\ & \gt {\left[ {\frac{{\beta + 1}}{{\lambda t}}{\sigma ^*}(k)} \right]^{\frac{1}{\alpha }}} \end{aligned} \tag{21} s(k)>ψ(α)[λtβ+1σ(k)]α1>[λtβ+1σ(k)]α1(21)
其中,∣Ceσ(k)∣≤σ∗|C_{\text{e}} \sigma(k)| \leq \sigma^*Ceσ(k)σ,由此可得在式19中有
qts(k)+λβ+1tsα(k)−Ceσ(k)≥qts(k)+σ∗ψα(α)−∣Ceσ(k)∣≥qtρ+[ψα(α)−1]σ∗:=ϱ(22)qts(k) + \frac{\lambda}{\beta + 1} t s^\alpha(k) - C_{\text{e}} \sigma(k) \geq qts(k) + \sigma^* \psi^\alpha(\alpha) - |C_{\text{e}} \sigma(k)| \\ \geq qt \rho + \left[ \psi^\alpha(\alpha) - 1 \right] \sigma^* := \varrho \tag{22} qts(k)+β+1λtsα(k)Ceσ(k)qts(k)+σψα(α)Ceσ(k)qtρ+[ψα(α)1]σ:=ϱ(22)
B=(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))B = (1-qt) s(k) - \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{sig}^\alpha(s(k))B=(1qt)s(k)β+sgn(s(k))λtsigα(s(k)),则s(k)s (k)s(k)理论边界计算如下:
(1−qt)s(k)−λβ+sgn(s(k))tsigα(s(k))>0s(k)>ψ(α)[λ(β+1)(1−qt)]11−α(23)\begin{aligned} &(1 - qt)s(k) - \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{si} \text{g}^{\alpha}(s(k)) > 0 \\ &s(k) > \psi(\alpha) \left[ \frac{\lambda}{(\beta + 1)(1 - qt)} \right]^{\frac{1}{1 - \alpha}} \end{aligned} \tag{23} (1qt)s(k)β+sgn(s(k))λtsigα(s(k))>0s(k)>ψ(α)[(β+1)(1qt)λ]1α1(23)
如果直接使用理论边界,会因未考虑时滞引发的状态偏移,导致实际波动超出理论范围。故而在上述理论边界的基础上,添加放缩因子ψ(α)\psi(\alpha)ψ(α),使实际边界略大于理论边界,则实际边界为
ρ=ψ(α)⋅max⁡{((β+sgn(s(k)))σ∗λt)1α,(λt(β+sgn(s(k)))(1−qt))11−α}(24)\rho = \psi(\alpha) \cdot \max\left\{ \left( \frac{(\beta + \text{sgn}(s(k))) \sigma^*}{\lambda t} \right)^{\frac{1}{\alpha}}, \left( \frac{\lambda t}{(\beta + \text{sgn}(s(k)))(1 - qt)} \right)^{\frac{1}{1 - \alpha}} \right\} \tag{24} ρ=ψ(α)max{(λt(β+sgn(s(k)))σ)α1,((β+sgn(s(k)))(1qt)λt)1α1}(24)
其中,ψ(α)=1+αα1−α−α11−α\psi(\alpha) = 1 + \alpha^{\frac{\alpha}{1 - \alpha}} - \alpha^{\frac{1}{1 - \alpha}}ψ(α)=1+α1ααα1α1。将式19、式21、式22联立可得:
2s(k)−qts(k)−λβ+1tsα(k)+Ceσ(k)≥qts(k)+λβ+1tsα(k)−∣Ceσ(k)∣≥ϱ(25)2s(k) - qts(k) - \frac{\lambda}{\beta + 1} t s^\alpha(k) + C_{\text{e}} \sigma(k) \geq qts(k) + \frac{\lambda}{\beta + 1} t s^\alpha(k) - |C_{\text{e}} \sigma(k)| \geq \varrho \tag{25} 2s(k)qts(k)β+1λtsα(k)+Ceσ(k)qts(k)+β+1λtsα(k)Ceσ(k)ϱ(25)
综上所述,ΔV(k)≤−ϱ2\Delta V(k) \leq -\varrho^2ΔV(k)ϱ2。针对s(k)<−ρs(k) < -\rhos(k)<ρ可以用相同的方法证明ΔV(k)≤−ϱ2\Delta V(k) \leq -\varrho^2ΔV(k)ϱ2

根据上述结论,
s(k+1)2−s(k)2≤−ϱ2{s(1)2≤s(0)2−ϱ2s(2)2≤s(0)2−2ϱ2⋮s(m)2≤s(0)2−mϱ2(26)s(k + 1)^2 - s(k)^2 \leq -\varrho^2 \\ \begin{cases} s(1)^2 \leq s(0)^2 - \varrho^2 \\ s(2)^2 \leq s(0)^2 - 2\varrho^2 \\ \vdots \\ s(m)^2 \leq s(0)^2 - m\varrho^2 \end{cases} \tag{26} s(k+1)2s(k)2ϱ2s(1)2s(0)2ϱ2s(2)2s(0)22ϱ2s(m)2s(0)2mϱ2(26)
s(m∗)2=ρ2s(m^*)^2 = \rho^2s(m)2=ρ2时,s(k)s(k)s(k)恰好到达$\Omega $边界,该边界可表示为
ρ=ψ(α)Φ=ψ(α)max⁡{((β+sgn(s(k)))σ∗λt)1α,(λt(β+sgn(s(k)))(1−qt))11−α}(27)\rho = \psi(\alpha) \Phi = \psi(\alpha) \max\left\{ \left( \frac{(\beta + \text{sgn}(s(k))) \sigma^*}{\lambda t} \right)^{\frac{1}{\alpha}}, \left( \frac{\lambda t}{(\beta + \text{sgn}(s(k)))(1 - qt)} \right)^{\frac{1}{1 - \alpha}} \right\} \tag{27} ρ=ψ(α)Φ=ψ(α)max{(λt(β+sgn(s(k)))σ)α1,((β+sgn(s(k)))(1qt)λt)1α1}(27)
此时分两种情况:

((β+sgn(s(k)))σ∗λt)1α>(λt(β+sgn(s(k)))(1−qt))11−α\left( \frac{(\beta + \text{sgn}(s(k))) \sigma^*}{\lambda t} \right)^{\frac{1}{\alpha}} \gt \left( \frac{\lambda t}{(\beta + \text{sgn}(s(k)))(1 - qt)} \right)^{\frac{1}{1 - \alpha}}(λt(β+sgn(s(k)))σ)α1>((β+sgn(s(k)))(1qt)λt)1α1时,则有
{((β+sgn(s(k)))σ∗λt)1α≤(λt(β+sgn(s(k)))(1−qt))11−ασ∗≤λtβ+sgn(s(k))(λt(β+sgn(s(k)))(1−qt))α1−α{Φα≥(β+sgn(s(k)))σ∗λtσ∗≤λt(β+sgn(s(k)))Φα=λt(β+sgn(s(k)))(λt(β+sgn(s(k)))(1−qt))α1−α=(λt(β+sgn(s(k))))11−α(1(1−qt))α1−α=(λt(β+sgn(s(k)))(1−qt)α)11−α=(λt(1−qt)1−α(β+sgn(s(k)))(1−qt))11−α=(1−qt)Φ(28)\begin{array}{l} \left\{ \begin{array}{l} {\left( {\frac{{(\beta + {\rm{sgn}}(s(k))){\sigma ^*}}}{{\lambda t}}} \right)^{\frac{1}{\alpha }}} \le {\left( {\frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))(1 - qt)}}} \right)^{\frac{1}{{1 - \alpha }}}}\\ {\sigma ^*} \le \frac{{\lambda t}}{{\beta + {\rm{sgn}}(s(k))}}{\left( {\frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))(1 - qt)}}} \right)^{\frac{\alpha }{{1 - \alpha }}}} \end{array} \right.\\ \left\{ \begin{array}{l} {\Phi ^\alpha } \ge \frac{{(\beta + {\rm{sgn}}(s(k))){\sigma ^*}}}{{\lambda t}}\\ {\sigma ^*} \le \frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))}}{\Phi ^\alpha } = \frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))}}{\left( {\frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))(1 - qt)}}} \right)^{\frac{\alpha }{{1 - \alpha }}}}\\ = {\left( {\frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))}}} \right)^{\frac{1}{{1 - \alpha }}}}{\left( {\frac{1}{{(1 - qt)}}} \right)^{\frac{\alpha }{{1 - \alpha }}}}\\ = {\left( {\frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k))){{(1 - qt)}^\alpha }}}} \right)^{\frac{1}{{1 - \alpha }}}}\\ = {\left( {\frac{{\lambda t{{(1 - qt)}^{1 - \alpha }}}}{{(\beta + {\rm{sgn}}(s(k)))(1 - qt)}}} \right)^{\frac{1}{{1 - \alpha }}}}\\ = (1 - qt)\Phi \end{array} \right. \end{array} \tag{28} (λt(β+sgn(s(k)))σ)α1((β+sgn(s(k)))(1qt)λt)1α1σβ+sgn(s(k))λt((β+sgn(s(k)))(1qt)λt)1ααΦαλt(β+sgn(s(k)))σσ(β+sgn(s(k)))λtΦα=(β+sgn(s(k)))λt((β+sgn(s(k)))(1qt)λt)1αα=((β+sgn(s(k)))λt)1α1((1qt)1)1αα=((β+sgn(s(k)))(1qt)αλt)1α1=((β+sgn(s(k)))(1qt)λt(1qt)1α)1α1=(1qt)Φ(28)
((β+sgn(s(k)))σ∗λt)1α<(λt(β+sgn(s(k)))(1−qt))11−α\left( \frac{(\beta + \text{sgn}(s(k))) \sigma^*}{\lambda t} \right)^{\frac{1}{\alpha}} \lt \left( \frac{\lambda t}{(\beta + \text{sgn}(s(k)))(1 - qt)} \right)^{\frac{1}{1 - \alpha}}(λt(β+sgn(s(k)))σ)α1<((β+sgn(s(k)))(1qt)λt)1α1时,则有
σ∗=λt(β+sgn(s(k)))Φασ∗1−α≥(λt(β+sgn(s(k))))1−α(λt(β+sgn(s(k)))(1−qt))α=λt(β+sgn(s(k)))(1−qt)ασ∗≤(1−qt)((β+sgn(s(k)))σ∗λt)1α=((1−qt)α(β+sgn(s(k)))σ∗λt)1α(29)\begin{array}{l} {\sigma ^*} = \frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))}}{\Phi ^\alpha }{\rm{ }}\\ {\sigma ^*}^{1 - \alpha } \ge {\left( {\frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))}}} \right)^{1 - \alpha }}{\left( {\frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k)))(1 - qt)}}} \right)^\alpha } = \frac{{\lambda t}}{{(\beta + {\rm{sgn}}(s(k))){{(1 - qt)}^\alpha }}}\\ {\sigma ^*} \le (1 - qt){\left( {\frac{{(\beta + {\rm{sgn}}(s(k))){\sigma ^*}}}{{\lambda t}}} \right)^{\frac{1}{\alpha }}} = {\left( {\frac{{{{(1 - qt)}^\alpha }(\beta + {\rm{sgn}}(s(k))){\sigma ^*}}}{{\lambda t}}} \right)^{\frac{1}{\alpha }}} \end{array} \tag{29} σ=(β+sgn(s(k)))λtΦασ1α((β+sgn(s(k)))λt)1α((β+sgn(s(k)))(1qt)λt)α=(β+sgn(s(k)))(1qt)αλtσ(1qt)(λt(β+sgn(s(k)))σ)α1=(λt(1qt)α(β+sgn(s(k)))σ)α1(29)
综上所述σ∗≤(1−qt)Φ\sigma^* \leq (1 - qt)\Phiσ(1qt)Φs(k+1)s(k+1)s(k+1)可重新表述为
s(k+1)=(1−qt)θρ−λβ+sgn(s(k))tsigα(θρ)+Ceσ(k)≤(1−qt)ψ(α)θΦ−λβ+sgn(s(k))tsigα(ψ(α)θ)Φα+σ∗(30)s(k + 1) = (1 - qt)\theta\rho - \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{sig}^\alpha(\theta\rho) + C_e \sigma(k) \\ \leq (1 - qt)\psi(\alpha)\theta\Phi - \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{sig}^\alpha(\psi(\alpha)\theta)\Phi^\alpha + \sigma^* \tag{30} s(k+1)=(1qt)θρβ+sgn(s(k))λtsigα(θρ)+Ceσ(k)(1qt)ψ(α)θΦβ+sgn(s(k))λtsigα(ψ(α)θ)Φα+σ(30)
基于该关系,论证−ρ≤s(k+1)≤ρ-\rho \leq s(k + 1) \leq \rhoρs(k+1)ρ,同样分为两种情况

情况1:s(k+1)≤ρs(k + 1) \leq \rhos(k+1)ρ

ψ(α)θ>0\psi (\alpha )\theta > 0ψ(α)θ>0
s.t.λβ+sgn(s(k))tΦα=σ∗s(k+1)≤(1−qt)ψ(α)θΦ−λβ+sgn(s(k))t(ψ(α)θ)αΦα+σ∗≤(1−qt)ψ(α)θΦ−(ψ(α)θ)ασ∗+σ∗(31)\begin{array}{l} s.t.\frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\Phi ^\alpha } = {\sigma ^*}\\ s(k + 1) \le (1 - qt)\psi (\alpha )\theta \Phi - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{(\psi (\alpha )\theta )^\alpha }{\Phi ^\alpha } + {\sigma ^*}\\ \le (1 - qt)\psi (\alpha )\theta \Phi - {(\psi (\alpha )\theta )^\alpha }{\sigma ^*} + {\sigma ^*} \end{array} \tag{31} s.t.β+sgn(s(k))λtΦα=σs(k+1)(1qt)ψ(α)θΦβ+sgn(s(k))λt(ψ(α)θ)αΦα+σ(1qt)ψ(α)θΦ(ψ(α)θ)ασ+σ(31)
ψ(α)θ>1\psi (\alpha )\theta > 1ψ(α)θ>1
s.t.{σ∗≤(1−qt)Φs(k+1)=θψ(α)Φρ=ψ(α)Φs(k+1)≤(1−qt)ψ(α)θΦ≤ψ(α)θΦ≤ψ(α)Φ=ρ(32)\begin{array}{l} s.t.\left\{ \begin{array}{l} {\sigma ^*} \le (1 - qt)\Phi \\ s(k + 1) = \theta \psi (\alpha )\Phi \\ \rho = \psi (\alpha )\Phi \end{array} \right.\\ s(k + 1) \le (1 - qt)\psi (\alpha )\theta \Phi \le \psi (\alpha )\theta \Phi \le \psi (\alpha )\Phi = \rho \end{array} \tag{32} s.t.σ(1qt)Φs(k+1)=θψ(α)Φρ=ψ(α)Φs(k+1)(1qt)ψ(α)θΦψ(α)θΦψ(α)Φ=ρ(32)
0≤ψ(α)θ≤10 \le \psi (\alpha )\theta \le 10ψ(α)θ1
s(k+1)=(1−qt)θρ−λβ+sgn(s(k))tsigα(θρ)+Ceσ(k)≤(1−qt)ψ(α)θΦ−λβ+sgn(s(k))tΦαsigα(ψ(α)θ)+σ∗≤(1−qt)ψ(α)θΦ−(1−qt)Φ(ψ(α)θ)α+σ∗≤(1−qt)ψ(α)θΦ−(ψ(α)θ)ασ∗+σ∗≤(1−qt)ψ(α)θΦ+[1−(ψ(α)θ)α]σ∗≤(1−qt)ψ(α)θΦ+(1−qt)Φ[1−(ψ(α)θ)α]=(1−qt)Φ[ψ(α)θ+1−(ψ(α)θ)α]≤(1−qt)Φ<ψ(α)Φ=ρ(33)\begin{aligned} s(k + 1) & = (1 - qt)\theta \rho - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(\theta \rho ) + {C_e}\sigma (k)\\ & \le (1 - qt)\psi (\alpha )\theta \Phi - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\Phi ^\alpha }{\rm{si}}{{\rm{g}}^\alpha }(\psi (\alpha )\theta ) + {\sigma ^*}\\ & \le (1 - qt)\psi (\alpha )\theta \Phi - (1 - qt)\Phi {\left( {\psi (\alpha )\theta } \right)^\alpha } + {\sigma ^*}\\ & \le (1 - qt)\psi (\alpha )\theta \Phi - {\left( {\psi (\alpha )\theta } \right)^\alpha }{\sigma ^*} + {\sigma ^*}\\ & \le (1 - qt)\psi (\alpha )\theta \Phi + \left[ {1 - {{\left( {\psi (\alpha )\theta } \right)}^\alpha }} \right]{\sigma ^*}\\ & \le (1 - qt)\psi (\alpha )\theta \Phi + (1 - qt)\Phi \left[ {1 - {{\left( {\psi (\alpha )\theta } \right)}^\alpha }} \right]\\ & = (1 - qt)\Phi \left[ {\psi (\alpha )\theta + 1 - {{\left( {\psi (\alpha )\theta } \right)}^\alpha }} \right]\\ & \le (1 - qt)\Phi \\ & < \psi (\alpha )\Phi \\ & = \rho \end{aligned} \tag{33} s(k+1)=(1qt)θρβ+sgn(s(k))λtsigα(θρ)+Ceσ(k)(1qt)ψ(α)θΦβ+sgn(s(k))λtΦαsigα(ψ(α)θ)+σ(1qt)ψ(α)θΦ(1qt)Φ(ψ(α)θ)α+σ(1qt)ψ(α)θΦ(ψ(α)θ)ασ+σ(1qt)ψ(α)θΦ+[1(ψ(α)θ)α]σ(1qt)ψ(α)θΦ+(1qt)Φ[1(ψ(α)θ)α]=(1qt)Φ[ψ(α)θ+1(ψ(α)θ)α](1qt)Φ<ψ(α)Φ=ρ(33)
ψ(α)θ≤0\psi (\alpha )\theta \le 0ψ(α)θ0
s(k+1)≤−(1−qt)∣ψ(α)θ∣Φ+∣ψ(α)θ∣α(1−qt)Φ+σ∗(34)s(k + 1) \leq -(1 - qt)|\psi(\alpha)\theta|\Phi + |\psi(\alpha)\theta|^\alpha(1 - qt)\Phi + \sigma^* \tag{34} s(k+1)(1qt)ψ(α)θ∣Φ+ψ(α)θα(1qt)Φ+σ(34)
ψ(α)θ≤−1\psi (\alpha )\theta \le -1ψ(α)θ1
s(k+1)≤σ∗≤(1−qt)Φ<ψ(α)Φ=ρ(35)s(k + 1) \leq \sigma^* \leq (1 - qt)\Phi < \psi(\alpha)\Phi = \rho \tag{35} s(k+1)σ(1qt)Φ<ψ(α)Φ=ρ(35)
−1≤ψ(α)θ≤0-1 \le \psi (\alpha )\theta \le 01ψ(α)θ0
s.t.{σ∗≤(1−qt)Φs(k+1)=θψ(α)Φρ=ψ(α)Φs(k+1)≤−(1−qt)∣ψ(α)θ∣Φ+∣ψ(α)θ∣ασ∗+σ∗≤−(1−qt)∣ψ(α)θ∣Φ+∣ψ(α)θ∣ασ∗+σ∗≤−(1−qt)∣ψ(α)θ∣Φ+∣ψ(α)θ∣α(1−qt)Φ+(1−qt)Φ=[1−∣ψ(α)θ∣+∣ψ(α)θ∣α](1−qt)Φ(36)\begin{array}{l} s.t.\left\{ \begin{array}{l} {\sigma ^*} \le (1 - qt)\Phi \\ s(k + 1) = \theta \psi (\alpha )\Phi \\ \rho = \psi (\alpha )\Phi \end{array} \right.\\ s(k + 1) \le - (1 - qt)\left| {\psi (\alpha )\theta } \right|\Phi + {\left| {\psi (\alpha )\theta } \right|^\alpha }{\sigma ^*} + {\sigma ^*} \le - (1 - qt)\left| {\psi (\alpha )\theta } \right|\Phi + {\left| {\psi (\alpha )\theta } \right|^\alpha }{\sigma ^*} + {\sigma ^*}\\ \le - (1 - qt)\left| {\psi (\alpha )\theta } \right|\Phi + {\left| {\psi (\alpha )\theta } \right|^\alpha }(1 - qt)\Phi + (1 - qt)\Phi \\ = \left[ {1 - \left| {\psi (\alpha )\theta } \right| + {{\left| {\psi (\alpha )\theta } \right|}^\alpha }} \right](1 - qt)\Phi \end{array} \tag{36} s.t.σ(1qt)Φs(k+1)=θψ(α)Φρ=ψ(α)Φs(k+1)(1qt)ψ(α)θΦ+ψ(α)θασ+σ(1qt)ψ(α)θΦ+ψ(α)θασ+σ(1qt)ψ(α)θΦ+ψ(α)θα(1qt)Φ+(1qt)Φ=[1ψ(α)θ+ψ(α)θα](1qt)Φ(36)
情况2:s(k+1)≥−ρs(k + 1) \geq -\rhos(k+1)ρ则有
s.t.∣Ceσ(k)∣≤σ∗s(k+1)≥(1−qt)ψ(α)θΦ−λβ+sgn(s(k))tsigα(ψ(α)θ)Φα−σ∗(37)s.t. |C_e \sigma(k)| \leq \sigma^* \\ s(k + 1) \geq (1 - qt)\psi(\alpha)\theta\Phi - \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{sig}^\alpha(\psi(\alpha)\theta)\Phi^\alpha - \sigma^* \tag{37} s.t.∣Ceσ(k)σs(k+1)(1qt)ψ(α)θΦβ+sgn(s(k))λtsigα(ψ(α)θ)Φασ(37)
ψ(α)θ>1\psi (\alpha )\theta > 1ψ(α)θ>1
s(k+1)≥(1−qt)ψ(α)θΦ−λβ+sgn(s(k))tsigα(ψ(α)θ)Φα−σ∗≥−σ∗≥−(1−qt)Φ≥−ρ(38)s(k + 1) \geq (1 - qt)\psi(\alpha)\theta\Phi - \frac{\lambda}{\beta + \text{sgn}(s(k))} t \text{sig}^\alpha(\psi(\alpha)\theta)\Phi^\alpha - \sigma^* \\ \geq - \sigma^* \geq -(1-qt) \Phi \geq - \rho \tag{38} s(k+1)(1qt)ψ(α)θΦβ+sgn(s(k))λtsigα(ψ(α)θ)Φασσ(1qt)Φρ(38)
0≤ψ(α)θ≤10 \le \psi (\alpha )\theta \le 10ψ(α)θ1
s(k+1)≥(1−qt)ψ(α)θΦ−λβ+sgn(s(k))tsigα(ψ(α)θ)Φα−σ∗≥(1−qt)ψ(α)θΦ−(ψ(α)θ)ασ∗−σ∗≥(1−qt)ψ(α)θΦ−(1−qt)Φ(ψ(α)θ)α−(1−qt)Φσ∗=(1−qt)Φ(ψ(α)θ−(ψ(α)θ)α−1)(39)\begin{aligned} s(k + 1) & \ge (1 - qt)\psi (\alpha )\theta \Phi - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(\psi (\alpha )\theta ){\Phi ^\alpha } - {\sigma ^*}\\ & \ge (1 - qt)\psi (\alpha )\theta \Phi - {(\psi (\alpha )\theta )^\alpha }{\sigma ^*} - {\sigma ^*}\\ & \ge (1 - qt)\psi (\alpha )\theta \Phi - (1 - qt)\Phi {(\psi (\alpha )\theta )^\alpha } - (1 - qt)\Phi {\sigma ^*}\\ & = (1 - qt)\Phi \left( {\psi (\alpha )\theta - {{(\psi (\alpha )\theta )}^\alpha } - 1} \right) \end{aligned} \tag{39} s(k+1)(1qt)ψ(α)θΦβ+sgn(s(k))λtsigα(ψ(α)θ)Φασ(1qt)ψ(α)θΦ(ψ(α)θ)ασσ(1qt)ψ(α)θΦ(1qt)Φ(ψ(α)θ)α(1qt)Φσ=(1qt)Φ(ψ(α)θ(ψ(α)θ)α1)(39)
−1≤ψ(α)θ≤0-1 \le \psi (\alpha )\theta \le 01ψ(α)θ0
s(k+1)≥(1−qt)ψ(α)θΦ−λβ+sgn(s(k))tsigα(ψ(α)θ)Φα−σ∗≥−(1−qt)∣ψ(α)θ∣Φ+∣ψ(α)θ∣ασ∗−σ∗≥−(1−qt)∣ψ(α)θ∣Φ+(1−qt)Φ∣ψ(α)θ∣ασ∗−(1−qt)Φσ∗=(1−qt)Φ((ψ(α)θ)α−ψ(α)θ−1)≥−(1−qt)Φ≥−ρ(40)\begin{aligned} s(k + 1) & \ge (1 - qt)\psi (\alpha )\theta \Phi - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(\psi (\alpha )\theta ){\Phi ^\alpha } - {\sigma ^*}\\ & \ge - (1 - qt)\left| {\psi (\alpha )\theta } \right|\Phi + {\left| {\psi (\alpha )\theta } \right|^\alpha }{\sigma ^*} - {\sigma ^*}\\ & \ge - (1 - qt)\left| {\psi (\alpha )\theta } \right|\Phi + (1 - qt)\Phi {\left| {\psi (\alpha )\theta } \right|^\alpha }{\sigma ^*} - (1 - qt)\Phi {\sigma ^*}\\ & = (1 - qt)\Phi \left( {{{(\psi (\alpha )\theta )}^\alpha } - \psi (\alpha )\theta - 1} \right)\\ & \ge - (1 - qt)\Phi \\ & \ge - \rho \end{aligned} \tag{40} s(k+1)(1qt)ψ(α)θΦβ+sgn(s(k))λtsigα(ψ(α)θ)Φασ(1qt)ψ(α)θΦ+ψ(α)θασσ(1qt)ψ(α)θΦ+(1qt)Φψ(α)θασ(1qt)Φσ=(1qt)Φ((ψ(α)θ)αψ(α)θ1)(1qt)Φρ(40)
ψ(α)θ≤−1\psi (\alpha )\theta \le -1ψ(α)θ1
s(k+1)≥(1−qt)ψ(α)θΦ−λβ+sgn(s(k))tsigα(ψ(α)θ)Φα−σ∗≥(1−qt)ψ(α)θΦ+λβ+sgn(s(k))t∣ψ(α)θ∣αΦα−σ∗≥(1−qt)Φψ(α)θ+∣ψ(α)θ∣ασ∗−σ∗≥(1−qt)Φψ(α)θ≥−ρ(41)\begin{aligned} s(k + 1) & \ge (1 - qt)\psi (\alpha )\theta \Phi - \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\rm{si}}{{\rm{g}}^\alpha }(\psi (\alpha )\theta ){\Phi ^\alpha } - {\sigma ^*}\\ & \ge (1 - qt)\psi (\alpha )\theta \Phi + \frac{\lambda }{{\beta + {\rm{sgn}}(s(k))}}t{\left| {\psi (\alpha )\theta } \right|^\alpha }{\Phi ^\alpha } - {\sigma ^*}\\ & \ge (1 - qt)\Phi \psi (\alpha )\theta + {\left| {\psi (\alpha )\theta } \right|^\alpha }{\sigma ^*} - {\sigma ^*}\\ & \ge (1 - qt)\Phi \psi (\alpha )\theta \\ & \ge - \rho \end{aligned} \tag{41} s(k+1)(1qt)ψ(α)θΦβ+sgn(s(k))λtsigα(ψ(α)θ)Φασ(1qt)ψ(α)θΦ+β+sgn(s(k))λtψ(α)θαΦασ(1qt)Φψ(α)θ+ψ(α)θασσ(1qt)Φψ(α)θρ(41)
综上所述,ρ<s(k+1)<ρ\rho \lt s(k+1) \lt \rhoρ<s(k+1)<ρ

本文小结

本文粗略的给出了带有SMC特征的辅助控制器设计过程及其稳定性证明。
若有问题请同行帮忙指出,谢谢。

参考文献

  1. 基于鲁棒 Tube-MPC 算法的无人车横向控制方法研究
http://www.dtcms.com/a/487675.html

相关文章:

  • PSG技术文章大纲
  • 网站建设常用模板下载尚志网络推广
  • vxe-table编辑模式适配el-date-picker
  • 外贸人自己搭建外贸网站wordpress广州网站制作报价
  • ApplicationThread和ActivityThread关系
  • 网站搜索页面设计百度免费咨询
  • Python入门第八课:学会文件操作,让数据持久化存储
  • 四川建设数字证书网站付费查看下载wordpress虚拟资源
  • 溧水做网站汕头建站方案
  • 网站制作学什么软件东城企业网站开发
  • 【机器视觉-基础知识】三角测量(Triangulation)
  • 三轴云台之构图优化技术篇
  • 酒店官方网站的功能建设温州外贸网站建设公司
  • [记录]whisper-diarization自动语音识别与说话人分离
  • 正规网站优化推广如何提升网站搜索排名
  • day11_web应用构建
  • 网站开发项目流程图基于推荐算法的网站开发
  • LeetCode 3350. 检测相邻递增子数组 II
  • 【底层机制】【Android】深入理解UI体系与绘制机制
  • 注册一个软件需要多少钱牡丹江网站seo
  • 高校英文网站建设贵阳网站推广有几家
  • 建设一个网络交友的网站的论文网站系统有哪些
  • Echarts【图表生成】
  • #深入解析Golang命令行框架Cobra:构建强大的CLI应用
  • 智能体开发基础
  • 亚当学院网站视频建设教程wordpress flash插件下载
  • 矩阵奇异值分解算法(SVD)的导数 / 灵敏度分析
  • 如何查看一个网站是不是用h5做的怎样做企业营销网站
  • Valentina Studio:一款跨平台的数据库管理工具
  • Jmeter接口测试与压力测试