当前位置: 首页 > news >正文

优化算法研究Beale函数

使用optimtool库的优化算法

本文使用optimtool库,调用barzilar_borwein算法完成Rosenbrock函数的研究,观察barzilar_borwein算法和库内其他算法的比较,(1.0, 1.0)是Beale函数的​​局部最小值点​​(但非全局最优),测试​​抗局部最优能力,

pip install optimtool --upgrade

定义2维Beale函数

import optimtool.unconstrain as ou
from optimtool.base import sp
x = sp.symbols("x1:3")
beale = (1.5 - x[0] + x[0]*x[1])**2 + (2.25 - x[0] + x[0]*x[1]**2)**2 + (2.625 - x[0] + x[0]*x[1]**3)**2

barzilar_borwein训练结果和可视化

ou.gradient_descent.barzilar_borwein(beale, x, (1.0, 1.0), verbose=True)
(1.0, 1.0)      14.203125       0
[1.         0.72034394] 8.613364269221663       1
[1.09771206 0.44526583] 5.308680478886819       2
[1.38808475 0.12614333] 2.4006967233206993      3
[ 1.81279486 -0.01617082]       0.9682665292862405      4
[2.03284983 0.1410857 ] 0.4843382287348248      5
[2.43601476 0.31809602] 0.10111792835773516     6
[2.62672035 0.41291386] 0.04039621528658232     7
[2.87880839 0.055794  ] 1.9323574930766991      8
[2.68476699 0.41220433] 0.0230103496441457      9
[2.6934043  0.41094788] 0.021669608897330647    10
[2.713015   0.42406871] 0.018660135323331627    11
[2.77032813 0.38656005] 0.051301041937611376    12
[2.75075839 0.46151445] 0.028522292841715625    13
[2.76271057 0.43145075] 0.012091614034382534    14
[2.76476796 0.43475676] 0.011644013783718963    15
[2.77122976 0.43699469] 0.010919904196730747    16
[2.92399174 0.47500074] 0.0016417836126992238   17
[2.85965617 0.91512258] 8.59699032941753        18
[2.86811318 0.64779374] 0.8705754927670929      19
[2.87936329 0.5790505 ] 0.2886894485336716      20
[2.89458395 0.50600096] 0.025344434951079776    21
[2.9014701  0.48098516] 0.0025778990211843197   22
[2.90375526 0.47535493] 0.001653667555155547    23
[2.90464116 0.47518102] 0.0016220574119709882   24
[2.90843199 0.47621528] 0.0014890770779708734   25
[2.98762353 0.49690567] 2.4859796293172575e-05  26
[2.99867929 0.49813167] 5.478325861965015e-05   27
[2.9842555 0.5574171]   0.09420696446591374     28
[2.9966492  0.49899133] 2.5198466839731486e-06  29
[2.99663228 0.49913757] 1.8378779992713937e-06  30
[2.99664866 0.49916265] 1.8050407325405887e-06  31
[2.99669364 0.49917313] 1.7570171581121133e-06  32
[2.99983544 0.50002304] 9.834249770086522e-08   33
[3.00227074 0.49086265] 0.002142793215215115    34
[2.9999374 0.4999845]   6.273714547401102e-10   35
[2.99993782 0.49998448] 6.19164826802986e-10    36
[2.99994203 0.49998555] 5.380775953657981e-10   37
[3.00000058 0.49999619] 3.6011944648592926e-10  38
[2.99991092 0.50035631] 3.3051133379742784e-06  39
[2.99999978 0.49999994] 8.025618258458596e-15   40
[2.99999978 0.49999995] 7.708380972694445e-15   41
[2.99999978 0.49999995] 7.59350482463817e-15    42
[3.  0.5]       1.5808739939016994e-19  43
[3.         0.50000001] 4.083066852170755e-15   44
[3.  0.5]       1.3707812804078446e-23  45

在这里插入图片描述

ou.gradient_descent.barzilar_borwein(beale, x, (1.0, 1.0), verbose=True, method="ZhangHanger")
(1.0, 1.0)      14.203125       0
[1.         0.72034394] 8.613364269221663       1
[1.09771206 0.44526583] 5.308680478886819       2
[1.38808475 0.12614333] 2.4006967233206993      3
[ 1.81279486 -0.01617082]       0.9682665292862405      4
[2.03284983 0.1410857 ] 0.4843382287348248      5
[2.43601476 0.31809602] 0.10111792835773516     6
[2.62672035 0.41291386] 0.04039621528658232     7
[2.71747204 0.28435071] 0.26008839764092384     8
[2.67226958 0.41094835] 0.0254292658536358      9
[2.68042684 0.40699964] 0.023889944222237426    10
[2.68981891 0.4124228 ] 0.022133973764349488    11
[2.76693683 0.41912395] 0.016272517458961265    12
[2.76121611 0.47128016] 0.0353752922955927      13
[2.77419971 0.43532322] 0.010774107428702384    14
[2.77610285 0.43818197] 0.010406967726294009    15
[2.78242281 0.44043279] 0.009744413480985356    16
[2.9223384  0.47145685] 0.0025859041814931057   17
[2.91923711 0.48781357] 0.002661765726631872    18
[2.92202041 0.47966359] 0.0010654452142961034   19
[2.92256592 0.48000362] 0.0010477875164278496   20
[2.92894408 0.48172957] 0.0008757145664487597   21
[2.99252097 0.49561943] 0.0001534245116765266   22
[2.9906855  0.50359877] 0.0008192234862604692   23
[2.99212516 0.4979953 ] 1.00606612693764e-05    24
[2.99216663 0.49803773] 9.911725829044573e-06   25
[2.9923434  0.49808353] 9.46676798983928e-06    26
[2.99987763 0.49982185] 5.060125829771744e-07   27
[2.99947829 0.50146968] 5.9129826236347815e-05  28
[2.99985383 0.49996297] 3.4345729121736805e-09  29
[2.9998546 0.4999637]   3.385788203840971e-09   30
[2.99985819 0.49996461] 3.220563614227004e-09   31
[3.00000009 0.49999917] 1.6779755192772917e-11  32
[2.99996781 0.50012896] 4.327652668521588e-07   33
[2.99999999 0.5       ] 2.2720979769531056e-17  34
[2.99999999 0.5       ] 2.00270006921401e-17    35
[2.99999999 0.5       ] 1.9768810321824084e-17  36
[3.  0.5]       1.3515211240021842e-23  37

在这里插入图片描述

L_BFGS训练结果与可视化

ou.newton_quasi.L_BFGS(beale, x, (1.0, 1.0), verbose=True, m=3)
(1.0, 1.0)      14.203125       0
[1.        0.1328125]   4.6556049668799915      1
[1.00000356 0.13286779] 4.655697342036085       2
[ 1.66574987 -0.1297908 ]       1.4339963003221647      3
[2.1991451  0.09287751] 0.4326517471406336      4
[2.35337572 0.27289083] 0.15180361186229815     5
[2.58520254 0.42161438] 0.07002719915433513     6
[2.66269974 0.41183665] 0.027875197707779374    7
[2.81718557 0.44827726] 0.0067439483406747      8
[2.92624778 0.48433283] 0.001158589197305531    9
[2.97845726 0.49487611] 7.767076816080408e-05   10
[2.99986241 0.50060531] 9.440995823250198e-06   11
[3.0008939  0.50039985] 8.61848965475116e-07    12
[3.00005191 0.50001399] 4.6026050231769667e-10  13
[3.00000106 0.50000024] 1.8815802988498998e-13  14
[2.99999998 0.5       ] 1.0173394064978475e-15  15
[2.99999998 0.5       ] 6.912715808163152e-17   16
[3.  0.5]       2.280333215887406e-19   17
[3.  0.5]       5.311676031486097e-22   18

在这里插入图片描述

trust_region训练结果和可视化

ou.trust_region.steihaug_CG(beale, x, (1.0, 1.0), verbose=True)
(1.0, 1.0)      14.203125       0
[1.71804524 0.30400357] 1.4821315166203015      1
[2.46598675 0.25322778] 0.1596137753388936      2
[2.86370632 0.5336838 ] 0.10651715455464904     3
[3.04633254 0.50923385] 0.000428061736617055    4
[2.99276635 0.49835315] 8.972328081115206e-06   5
[2.99988483 0.49997523] 2.4542341429396344e-09  6
[2.99999997 0.49999999] 1.950864041697307e-16   7

在这里插入图片描述

http://www.dtcms.com/a/442732.html

相关文章:

  • 用万网做网站龙岗网站建设公司
  • roboguide如何显示或关闭寄存器或 IO 的注释信息
  • 公司电商网站开发方案数学网站建设方法
  • 网站开发与设计实训报告心得营销型网站建设的目标是
  • 建网站没有公司资质wordpress 下载远程图片
  • 网站建设与管理课程的目标织梦+和wordpress
  • 上国外网站哪个dns快网站查询平台官网
  • wordpress建站环境国内网络科技网站建设
  • 2025年渗透测试面试题总结-101(题目+回答)
  • 免费做网站. 优帮云上海公司招聘信息
  • K8s集群CNI升级:Calico3.28.2安装全攻略
  • 常州市城乡建设局网站网站内容和功能清单
  • 网站美工承德信息网络有限公司
  • 全星质量管理 QMS 软件系统:汽车电子与芯片半导体行业的 “质量一体化管家”
  • 网站没有被收录东莞长安网站优化
  • Leetcode 3699. Number of ZigZag Arrays I
  • 永久免费网站申请注册页面设计培训
  • postgresql分区表
  • 美食网站首页模板网络外包运营公司
  • Linux应用 文件属性和目录
  • pyQt实现一种按钮切换关联变化的勾选框的逻辑
  • 网站设计要先做图么网站建设为中心
  • Doris专题1- 什么是Doris
  • Linux文件系统---软硬连接
  • 如何建立商城网站拼团小程序制作平台
  • 火车头wordpress建站群网站移动站
  • 【51单片机32个灯,第一次亮1,2。第二次亮2,3。第三次亮3,4。。。。】2023-2-10
  • 【LangChain】P12 LangChain 提示词模板深度解析(三):实例化参数
  • 智能数据交换系统:内涵、架构、优化与发展趋势
  • 手机金融界网站网站单页是什么意思