当前位置: 首页 > news >正文

磁共振成像原理(理论)9:射频回波 (RF Echoes)-三脉冲回波(2)

接着上一篇文章继续推导。

t=(τ1+τ2)+t = (\tau_1+\tau_2)_+t=(τ1+τ2)+:横向磁化分量演变:

在第三个脉冲 (α3\alpha_3α3, 假设沿 y′y'y 轴施加) 之后瞬间 (t=(τ1+τ2)+t = (\tau_1+\tau_2)_+t=(τ1+τ2)+),磁化矢量的表达式如下:

x′x'x方向磁化分量:
Mx′[ω,(τ1+τ2)+]=Mx′(ω,(τ1+τ2)−)cos⁡α3−Mz′(ω,(τ1+τ2)−)sin⁡α3=Mx′(ω,(τ1+τ2))cos⁡α3−Mz′(ω,(τ1+τ2))sin⁡α3=−Mz0(ω)sin⁡α1cos⁡2α22cos⁡α3cos⁡ω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sin⁡α1sin⁡2α22cos⁡α3cos⁡ω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2cos⁡α3cos⁡ωτ2e−τ2/T2−Mz0(ω)[1−(1−cos⁡α2)e−τ2/T1−(1−cos⁡α1)cos⁡α2e−(τ1+τ2)/T1]sin⁡α3+Mz0(ω)sin⁡α1sin⁡α2sin⁡α3cos⁡ωτ1e−τ1/T2e−τ2/T1(4.41) \begin{aligned} M_{x^{\prime}}\left[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}\right] &=M_{x^{\prime}}(\omega,(\tau_{1}+\tau_{2})_- )\cos\alpha_3 - M_{z^{\prime}}(\omega,(\tau_{1}+\tau_{2})_-)\sin\alpha_3\\ &=M_{x^{\prime}}(\omega,(\tau_{1}+\tau_{2}) )\cos\alpha_3 - M_{z^{\prime}}(\omega,(\tau_{1}+\tau_{2}))\sin\alpha_3\\ &= -M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\ & +M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\ & -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\cos\alpha_{3}\cos\omega\tau_{2} e^{-\tau_{2} /T_{2}} \\ & -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3} \\ & +M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}\qquad (4.41) \end{aligned} Mx[ω,(τ1+τ2)+]=Mx(ω,(τ1+τ2))cosα3Mz(ω,(τ1+τ2))sinα3=Mx(ω,(τ1+τ2))cosα3Mz(ω,(τ1+τ2))sinα3=Mz0(ω)sinα1cos22α2cosα3cosω(τ1+τ2)e(τ1+τ2)/T2+Mz0(ω)sinα1sin22α2cosα3cosω(τ2τ1)e(τ1+τ2)/T2Mz0(ω)[1(1cosα1)eτ1/T1]sinα2cosα3cosωτ2eτ2/T2Mz0(ω)[1(1cosα2)eτ2/T1(1cosα1)cosα2e(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1eτ1/T2eτ2/T1(4.41)
y′y'y方向磁化分量保持不变(因为脉冲是y′y'y方向),仍为(4.39),重写如下
My′[ω,(τ1+τ2)+]=Mz0(ω)sin⁡α1cos⁡2α22sin⁡ω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sin⁡α1sin⁡2α22sin⁡ω(τ2−τ1)e−(τ1+τ2)/T2+Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2sin⁡ωτ2e−τ2/T2(4.39) \begin{aligned} M_{y^{\prime}}\left[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}\right] = & M_{z}^{0}(\omega) \sin \alpha_{1} \cos ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}} \\ & -M_{z}^{0}(\omega) \sin \alpha_{1} \sin ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}} \\ & +M_{z}^{0}(\omega)\left[1-\left(1-\cos \alpha_{1}\right) e^{-\tau_{1} / T_{1}}\right] \sin \alpha_{2} \sin \omega \tau_{2} e^{-\tau_{2} / T_{2}} \end{aligned} \tag{4.39} My[ω,(τ1+τ2)+]=Mz0(ω)sinα1cos22α2sinω(τ1+τ2)e(τ1+τ2)/T2Mz0(ω)sinα1sin22α2sinω(τ2τ1)e(τ1+τ2)/T2+Mz0(ω)[1(1cosα1)eτ1/T1]sinα2sinωτ2eτ2/T2(4.39)

z′z'z方向磁化分量:
Mz′[ω,(τ1+τ2)+]=Mz0(ω)[1−(1−cos⁡α2)e−τ2/T1−(1−cos⁡α1)cos⁡α2e−(τ1+τ2)/T1]cos⁡α3−Mz0(ω)sin⁡α1sin⁡α2sin⁡α3cos⁡ωτ1e−τ1/T2e−τ2/T1+Mz0(ω)sin⁡α1cos⁡2α22sin⁡α3cos⁡ω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sin⁡α1sin⁡2α22sin⁡α3cos⁡ω(τ2−τ1)e−(τ1+τ2)/T2(4.42)+Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2sin⁡α3cos⁡ωτ2e−τ2/T2 (4.42) \begin{aligned} M_{z^{\prime}}\left[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}\right] = & M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\cos\alpha_{3} \\ & -M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \\ & +M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\sin\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\ & -M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\sin\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \qquad (4.42)\\ & +M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{2} e^{-\tau_{2} /T_{2}}\ \end{aligned} \tag{4.42} Mz[ω,(τ1+τ2)+]=Mz0(ω)[1(1cosα2)eτ2/T1(1cosα1)cosα2e(τ1+τ2)/T1]cosα3Mz0(ω)sinα1sinα2sinα3cosωτ1eτ1/T2eτ2/T1+Mz0(ω)sinα1cos22α2sinα3cosω(τ1+τ2)e(τ1+τ2)/T2Mz0(ω)sinα1sin22α2sinα3cosω(τ2τ1)e(τ1+τ2)/T2(4.42)+Mz0(ω)[1(1cosα1)eτ1/T1]sinα2sinα3cosωτ2eτ2/T2 (4.42)

x′x'x方向磁化分量和y′y'y方向磁化分量合并成复数形式,得到

Mx′y′[ω,(τ1+τ2)+]=Mx′(ω,(τ1+τ2)+)+iMy′(ω,(τ1+τ2)+)={−Mz0(ω)sin⁡α1cos⁡2α22cos⁡α3cos⁡ω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sin⁡α1sin⁡2α22cos⁡α3cos⁡ω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2cos⁡α3cos⁡ωτ2e−τ2/T2−Mz0(ω)[1−(1−cos⁡α2)e−τ2/T1−(1−cos⁡α1)cos⁡α2e−(τ1+τ2)/T1]sin⁡α3+Mz0(ω)sin⁡α1sin⁡α2sin⁡α3cos⁡ωτ1e−τ1/T2e−τ2/T1}+i{Mz0(ω)sin⁡α1cos⁡2α22sin⁡ω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sin⁡α1sin⁡2α22sin⁡ω(τ2−τ1)e−(τ1+τ2)/T2+Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2sin⁡ωτ2e−τ2/T2}=−Mz0(ω)sin⁡α1cos⁡2α22e−(τ1+τ2)/T2[cos⁡α3cos⁡ω(τ1+τ2)−isin⁡ω(τ1+τ2)]++Mz0(ω)sin⁡α1sin⁡2α22e−(τ1+τ2)/T2[cos⁡α3cos⁡ω(τ2−τ1)−isin⁡ω(τ2−τ1)]+−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2e−τ2/T2[cos⁡α3cos⁡ωτ2−isin⁡ωτ2]+−Mz0(ω)[1−(1−cos⁡α2)e−τ2/T1−(1−cos⁡α1)cos⁡α2e−(τ1+τ2)/T1]sin⁡α3+Mz0(ω)sin⁡α1sin⁡α2sin⁡α3cos⁡ωτ1e−τ1/T2e−τ2/T1} \begin{aligned} &M_{x'y'}[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}] = \textcolor{red}{M_{x'}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+})}+i \textcolor{blue}{{M_{y'}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+})}}\\ =&\{ \textcolor{red}{-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\ & \textcolor{red}{+M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\ & \textcolor{red}{-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\cos\alpha_{3}\cos\omega\tau_{2} e^{-\tau_{2} /T_{2}}} \\ & \textcolor{red}{-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3}} \\ & \textcolor{red}{+M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}} \} \\ &+i\{ \textcolor{blue}{M_{z}^{0}(\omega) \sin \alpha_{1} \cos ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}} }\\ & \textcolor{blue}{-M_{z}^{0}(\omega) \sin \alpha_{1} \sin ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}}} \\ & \textcolor{blue}{+M_{z}^{0}(\omega)\left[1-\left(1-\cos \alpha_{1}\right) e^{-\tau_{1} / T_{1}}\right] \sin \alpha_{2} \sin \omega \tau_{2} e^{-\tau_{2} / T_{2}} }\}\\ \\ =& -M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right)-i\sin\omega(\tau_{1}+\tau_{2})] + \\ &+M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) -i\sin\omega\left(\tau_{2}-\tau_{1}\right)]+\\ &-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}[\cos\alpha_{3}\cos\omega\tau_{2} -i\sin\omega \tau_2]+\\ & -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3} \\ & +M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \} \\ \end{aligned} ==Mxy[ω,(τ1+τ2)+]=Mx(ω,(τ1+τ2)+)+iMy(ω,(τ1+τ2)+){Mz0(ω)sinα1cos22α2cosα3cosω(τ1+τ2)e(τ1+τ2)/T2+Mz0(ω)sinα1sin22α2cosα3cosω(τ2τ1)e(τ1+τ2)/T2Mz0(ω)[1(1cosα1)eτ1/T1]sinα2cosα3cosωτ2eτ2/T2Mz0(ω)[1(1cosα2)eτ2/T1(1cosα1)cosα2e(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1eτ1/T2eτ2/T1}+i{Mz0(ω)sinα1cos22α2sinω(τ1+τ2)e(τ1+τ2)/T2Mz0(ω)sinα1sin22α2sinω(τ2τ1)e(τ1+τ2)/T2+Mz0(ω)[1(1cosα1)eτ1/T1]sinα2sinωτ2eτ2/T2}Mz0(ω)sinα1cos22α2e(τ1+τ2)/T2[cosα3cosω(τ1+τ2)isinω(τ1+τ2)]++Mz0(ω)sinα1sin22α2e(τ1+τ2)/T2[cosα3cosω(τ2τ1)isinω(τ2τ1)]+Mz0(ω)[1(1cosα1)eτ1/T1]sinα2eτ2/T2[cosα3cosωτ2isinωτ2]+Mz0(ω)[1(1cosα2)eτ2/T1(1cosα1)cosα2e(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1eτ1/T2eτ2/T1}

其中第一项为:
−Mz0(ω)sin⁡α1cos⁡2α22e−(τ1+τ2)/T2[cos⁡α3cos⁡ω(τ1+τ2)−isin⁡ω(τ1+τ2)]=−Mz0(ω)sin⁡α1cos⁡2α22e−(τ1+τ2)/T2[(cos⁡2α32−sin⁡2α32)cos⁡ω(τ1+τ2)−i(cos⁡2α32+sin⁡2α32)sin⁡ω(τ1+τ2)]=−Mz0(ω)sin⁡α1cos⁡2α22e−(τ1+τ2)/T2{cos⁡2α32[cos⁡ω(τ1+τ2)−isin⁡ω(τ1+τ2)]−sin⁡2α32[cos⁡ω(τ1+τ2)+isin⁡ω(τ1+τ2)]}=−Mz0(ω)sin⁡α1cos⁡2α22e−(τ1+τ2)/T2cos⁡2α32e−iω(τ1+τ2)+Mz0(ω)sin⁡α1cos⁡2α22e−(τ1+τ2)/T2sin⁡2α32eiω(τ1+τ2) \begin{aligned} &-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right)-i\sin\omega(\tau_{1}+\tau_{2})] \\ =&-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[(\cos^2 \frac {\alpha_3}{2}-\sin^2 \frac {\alpha_3}{2})\cos\omega\left(\tau_{1}+\tau_{2}\right)\\ &-i(\cos^2 \frac {\alpha_3}{2}+\sin^2 \frac {\alpha_3}{2})\sin\omega(\tau_{1}+\tau_{2})] \\ =&-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\{\cos^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{1}+\tau_{2}\right)-i\sin\omega\left(\tau_{1}+\tau_{2}\right)]\\ &-\sin^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{1}+\tau_{2}\right)+i\sin\omega\left(\tau_{1}+\tau_{2}\right)]\} \\ =&-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\cos^2 \frac {\alpha_3}{2}e^{-i\omega(\tau_1+\tau_2)} \\ & +M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\sin^2 \frac {\alpha_3}{2}e^{i\omega(\tau_1+\tau_2)} \end{aligned} ===Mz0(ω)sinα1cos22α2e(τ1+τ2)/T2[cosα3cosω(τ1+τ2)isinω(τ1+τ2)]Mz0(ω)sinα1cos22α2e(τ1+τ2)/T2[(cos22α3sin22α3)cosω(τ1+τ2)i(cos22α3+sin22α3)sinω(τ1+τ2)]Mz0(ω)sinα1cos22α2e(τ1+τ2)/T2{cos22α3[cosω(τ1+τ2)isinω(τ1+τ2)]sin22α3[cosω(τ1+τ2)+isinω(τ1+τ2)]}Mz0(ω)sinα1cos22α2e(τ1+τ2)/T2cos22α3e(τ1+τ2)+Mz0(ω)sinα1cos22α2e(τ1+τ2)/T2sin22α3e(τ1+τ2)

第二项为:
Mz0(ω)sin⁡α1sin⁡2α22e−(τ1+τ2)/T2[cos⁡α3cos⁡ω(τ2−τ1)−isin⁡ω(τ2−τ1)]=Mz0(ω)sin⁡α1sin⁡2α22e−(τ1+τ2)/T2[(cos⁡2α32−sin⁡2α32)cos⁡ω(τ2−τ1)−i(cos⁡2α32+sin⁡2α32)sin⁡ω(τ2−τ1)]=Mz0(ω)sin⁡α1sin⁡2α22e−(τ1+τ2)/T2{cos⁡2α32[cos⁡ω(τ2−τ1)−isin⁡ω(τ2−τ1)]−sin⁡2α32[cos⁡ω(τ2−τ1)+isin⁡ω(τ2−τ1)]}=Mz0(ω)sin⁡α1sin⁡2α22e−(τ1+τ2)/T2cos⁡2α32e−iω(τ2−τ1)−Mz0(ω)sin⁡α1sin⁡2α22e−(τ1+τ2)/T2sin⁡2α32eiω(τ2−τ1) \begin{aligned} &M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) -i\sin\omega\left(\tau_{2}-\tau_{1}\right)]\\ =&M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[(\cos^2 \frac {\alpha_3}{2}-\sin^2 \frac {\alpha_3}{2})\cos\omega\left(\tau_{2}-\tau_{1}\right)\\ &-i(\cos^2 \frac {\alpha_3}{2}+\sin^2 \frac {\alpha_3}{2})\sin\omega(\tau_{2}-\tau_{1})]\\ =&M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\{\cos^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{2}-\tau_{1}\right)-i\sin\omega\left(\tau_{2}-\tau_{1}\right)]\\ &-\sin^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{2}-\tau_{1}\right)+i\sin\omega\left(\tau_{2}-\tau_{1}\right)]\} \\ =&M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\cos^2 \frac {\alpha_3}{2}e^{-i\omega(\tau_2-\tau_1)} \\ & -M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\sin^2 \frac {\alpha_3}{2}e^{i\omega(\tau_2-\tau_1)} \end{aligned} ===Mz0(ω)sinα1sin22α2e(τ1+τ2)/T2[cosα3cosω(τ2τ1)isinω(τ2τ1)]Mz0(ω)sinα1sin22α2e(τ1+τ2)/T2[(cos22α3sin22α3)cosω(τ2τ1)i(cos22α3+sin22α3)sinω(τ2τ1)]Mz0(ω)sinα1sin22α2e(τ1+τ2)/T2{cos22α3[cosω(τ2τ1)isinω(τ2τ1)]sin22α3[cosω(τ2τ1)+isinω(τ2τ1)]}Mz0(ω)sinα1sin22α2e(τ1+τ2)/T2cos22α3e(τ2τ1)Mz0(ω)sinα1sin22α2e(τ1+τ2)/T2sin22α3e(τ2τ1)

第三项为:
−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2e−τ2/T2[cos⁡α3cos⁡ωτ2−isin⁡ωτ2]=−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2e−τ2/T2[(cos⁡2α32−sin⁡2α32)cos⁡ωτ2−i(cos⁡2α32+sin⁡2α32)sin⁡ωτ2]=−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2e−τ2/T2{cos⁡2α32(cos⁡ωτ2−isin⁡ωτ2)+−sin⁡2α32(cos⁡ωτ2+isin⁡ωτ2)}=−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2e−τ2/T2cos⁡2α32e−iωτ2+Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2e−τ2/T2sin⁡2α32eiωτ2 \begin{aligned} &-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}[\cos\alpha_{3}\cos\omega\tau_{2} -i\sin\omega \tau_2]\\ =&-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}[(\cos^2 \frac {\alpha_3}{2}-\sin^2 \frac {\alpha_3}{2})\cos\omega\tau_{2}\\ &-i(\cos^2 \frac {\alpha_3}{2}+\sin^2 \frac {\alpha_3}{2})\sin\omega\tau_{2}]\\ =&-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}\{\cos^2 \frac {\alpha_3}{2}(\cos\omega\tau_2-i\sin\omega\tau_2)+ \\ &-\sin^2 \frac {\alpha_3}{2}(\cos\omega\tau_2+i\sin\omega\tau_2) \}\\ =&-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}\cos^2 \frac {\alpha_3}{2}e^{-i\omega\tau_2}\\ &+M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}\sin^2 \frac {\alpha_3}{2}e^{i\omega\tau_2}\\ \end{aligned} ===Mz0(ω)[1(1cosα1)eτ1/T1]sinα2eτ2/T2[cosα3cosωτ2isinωτ2]Mz0(ω)[1(1cosα1)eτ1/T1]sinα2eτ2/T2[(cos22α3sin22α3)cosωτ2i(cos22α3+sin22α3)sinωτ2]Mz0(ω)[1(1cosα1)eτ1/T1]sinα2eτ2/T2{cos22α3(cosωτ2isinωτ2)+sin22α3(cosωτ2+isinωτ2)}Mz0(ω)[1(1cosα1)eτ1/T1]sinα2eτ2/T2cos22α3eτ2+Mz0(ω)[1(1cosα1)eτ1/T1]sinα2eτ2/T2sin22α3eτ2

第五项为:
Mz0(ω)sin⁡α1sin⁡α2sin⁡α3cos⁡ωτ1e−τ1/T2e−τ2/T1=12Mz0(ω)sin⁡α1sin⁡α2sin⁡α3e−τ1/T2e−τ2/T1eiωτ1+12Mz0(ω)sin⁡α1sin⁡α2sin⁡α3e−τ1/T2e−τ2/T1e−iωτ1 \begin{aligned} &M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \\ =&\frac{1}{2}M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}e^{i\omega\tau_1}+\\ &\frac{1}{2}M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}e^{-i\omega\tau_1} \end{aligned} =Mz0(ω)sinα1sinα2sinα3cosωτ1eτ1/T2eτ2/T121Mz0(ω)sinα1sinα2sinα3eτ1/T2eτ2/T1eτ1+21Mz0(ω)sinα1sinα2sinα3eτ1/T2eτ2/T1eτ1

将上面的式子全部合并,得到如下表达式:
Mxy[ω,(τ1+τ2)+]=Mx(ω,(τ1+τ2)+)+iMy(ω,(τ1+τ2)+)=−Mz0(ω)sin⁡α1cos⁡2α22cos⁡2α32e−iω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sin⁡α1cos⁡2α22sin⁡2α32eiω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sin⁡α1sin⁡2α22cos⁡2α32e−iω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)sin⁡α1sin⁡2α22sin⁡2α32eiω(τ2−τ1)e−(τ1+τ2)/T2+12Mz0(ω)sin⁡α1sin⁡α2sin⁡α3e−iωτ1e−τ1/T2e−τ2/T1(4.43)+12Mz0(ω)sin⁡α1sin⁡α2sin⁡α3eiωτ1e−τ1/T2e−τ2/T1−Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2cos⁡2α32e−iωτ2e−τ2/T2+Mz0(ω)[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2sin⁡2α32eiωτ2e−τ2/T2−Mz0(ω)[1−(1−cos⁡α2)e−τ2/T1−(1−cos⁡α1)cos⁡α2e−(τ1+τ2)/T1]sin⁡α3(4.43) \begin{aligned} M_{x y}[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}] = & M_{x}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+})+i M_{y}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+}) \\ = & -M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\cos^{2}\frac{\alpha_{3}}{2} e^{-i\omega\left(\tau_{1}+\tau_{2}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\ & \textcolor{red}{+M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2} e^{i\omega\left(\tau_{1}+\tau_{2}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\ & \textcolor{orange}{+M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\cos^{2}\frac{\alpha_{3}}{2} e^{-i\omega\left(\tau_{2}-\tau_{1}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\ & \textcolor{green}{-M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2} e^{i\omega\left(\tau_{2}-\tau_{1}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\ & +\frac{1}{2} M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{-i\omega\tau_{1}} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \qquad (4.43) \\ & \textcolor{blue}{+\frac{1}{2} M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{i\omega\tau_{1}} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}} \\ & -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\cos^{2}\frac{\alpha_{3}}{2} e^{-i\omega\tau_{2}} e^{-\tau_{2} /T_{2}} \\ & \textcolor{purple}{+M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\sin^{2}\frac{\alpha_{3}}{2} e^{i\omega\tau_{2}} e^{-\tau_{2} /T_{2}}} \\ & -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3} \end{aligned} \tag{4.43} Mxy[ω,(τ1+τ2)+]==Mx(ω,(τ1+τ2)+)+iMy(ω,(τ1+τ2)+)Mz0(ω)sinα1cos22α2cos22α3e(τ1+τ2)e(τ1+τ2)/T2+Mz0(ω)sinα1cos22α2sin22α3e(τ1+τ2)e(τ1+τ2)/T2+Mz0(ω)sinα1sin22α2cos22α3e(τ2τ1)e(τ1+τ2)/T2Mz0(ω)sinα1sin22α2sin22α3e(τ2τ1)e(τ1+τ2)/T2+21Mz0(ω)sinα1sinα2sinα3eτ1eτ1/T2eτ2/T1(4.43)+21Mz0(ω)sinα1sinα2sinα3eτ1eτ1/T2eτ2/T1Mz0(ω)[1(1cosα1)eτ1/T1]sinα2cos22α3eτ2eτ2/T2+Mz0(ω)[1(1cosα1)eτ1/T1]sinα2sin22α3eτ2eτ2/T2Mz0(ω)[1(1cosα2)eτ2/T1(1cosα1)cosα2e(τ1+τ2)/T1]sinα3(4.43)

t>τ1+τ2t > \tau_1+\tau_2t>τ1+τ2:横向磁化分量演变:

t≥τ1+τ2t \geq \tau_{1}+\tau_{2}tτ1+τ2,横向磁化分量演变:
Mx′y′(ω,t)=Mx′y′[ω,(τ1+τ2)+]e−(t−τ1−τ2)/T2e−iω(t−τ1−τ2)(4.44) M_{x^{\prime}y^{\prime}}(\omega,t)=M_{x^{\prime}y^{\prime}}[\omega,(\tau_{1}+\tau_{2})_{+}]e^{-(t-\tau_{1}-\tau_{2})/T_{2}}e^{-i\omega(t-\tau_{1}-\tau_{2})} \tag {4.44} Mxy(ω,t)=Mxy[ω,(τ1+τ2)+]e(tτ1τ2)/T2e(tτ1τ2)(4.44)

  • Mx′y′[ω,(τ1+τ2)+]M_{x^{\prime}y^{\prime}}[\omega,(\tau_{1}+\tau_{2})_{+}]Mxy[ω,(τ1+τ2)+]: 这是初始条件,代表第三个脉冲施加后瞬间 (t=(τ1+τ2)+t = (\tau_1 + \tau_2)_+t=(τ1+τ2)+) 的复横向磁化。其具体形式由公式 (4.43) 给出,包含了所有由前三个脉冲共同作用产生的磁化分量。
  • e−(t−τ1−τ2)/T2e^{-(t-\tau_{1}-\tau_{2})/T_{2}}e(tτ1τ2)/T2: T2T_2T2 弛豫衰减因子。表示从第三脉冲结束时刻 (t0=τ1+τ2t_0 = \tau_1+\tau_2t0=τ1+τ2) 开始,横向磁化以时间常数 T2T_2T2 进行指数衰减。
  • e−iω(t−τ1−τ2)e^{-i\omega(t-\tau_{1}-\tau_{2})}e(tτ1τ2): 进动因子。表示在旋转坐标系中,磁化矢量以角频率 ω\omegaω 继续绕z′z'z轴顺时针进动。(t−τ1−τ2)(t-\tau_{1}-\tau_{2})(tτ1τ2) 表示时间从 t0=τ1+τ2t_0 = \tau_1+\tau_2t0=τ1+τ2 开始计算。

将公式 (4.43) 代入 (4.44),将得到五类回波信号的时域表达式
S1(t)=A1∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ1)dω(4.45a)S2(t)=A2∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ1−τ2)dω(4.45b)S3(t)=A3∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ2)dω(4.45c)S4(t)=A4∫−∞∞ρ(ω)e−t/T2(ω)e−iω[t−(τ1+2τ2)]dω(4.45d)S5(t)=A5∫−∞∞ρ(ω)e−t/T2(ω)e−iω[t−2(τ1+τ2)]dω(4.45e) \begin{aligned} S_{1}(t) &= \textcolor{orange}{A_{1}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-2\tau_{1})}d\omega} \qquad &(4.45a) \\ S_{2}(t) &= \textcolor{blue}{A_{2}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-2\tau_{1}-\tau_2)}d\omega} \qquad &(4.45b) \\ S_{3}(t) &= \textcolor{green}{A_{3}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-2\tau_{2})}d\omega} \qquad &(4.45c) \\ S_{4}(t) &= \textcolor{purple}{A_{4}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega[t-(\tau_{1}+2\tau_{2})]}d\omega} \qquad &(4.45d) \\ S_{5}(t)&= \textcolor{red} {A_{5}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega[t-2(\tau_{1}+\tau_{2})]}d\omega} \qquad &(4.45e) \end{aligned} S1(t)S2(t)S3(t)S4(t)S5(t)=A1ρ(ω)et/T2(ω)e(t2τ1)dω=A2ρ(ω)et/T2(ω)e(t2τ1τ2)dω=A3ρ(ω)et/T2(ω)e(t2τ2)dω=A4ρ(ω)et/T2(ω)e[t(τ1+2τ2)]dω=A5ρ(ω)et/T2(ω)e[t2(τ1+τ2)]dω(4.45a)(4.45b)(4.45c)(4.45d)(4.45e)
其幅值满足:
A1=sin⁡α1sin⁡2α22cos2α32(4.46a)A2=12sin⁡α1sin⁡α2sin⁡α3e−τ2/T1(4.46b)A3=−sin⁡α1sin⁡2α22sin⁡2α32(4.46c)A4=[1−(1−cos⁡α1)e−τ1/T1]sin⁡α2sin⁡2α32(4.46d)A5=sin⁡α1cos⁡2α22sin⁡2α32(4.46e) \begin{aligned} A_{1} &= \textcolor{orange}{\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2} cos^{2}\frac{\alpha_{3}}{2}}\qquad &(4.46a) \\ A_{2} &= \textcolor{blue}{\frac{1}{2}\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}e^{-\tau_{2}/T_{1}}} \qquad &(4.46b) \\ A_{3} &= \textcolor{green}{-\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2}} \qquad &(4.46c) \\ A_{4} &= \textcolor{purple}{[1-(1-\cos\alpha_{1})e^{-\tau_{1}/T_{1}}]\sin\alpha_{2}\sin^{2}\frac{\alpha_{3}}{2}} \qquad &(4.46d) \\ A_{5} &= \textcolor{red} {\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2}} \qquad &(4.46e) \end{aligned} A1A2A3A4A5=sinα1sin22α2cos22α3=21sinα1sinα2sinα3eτ2/T1=sinα1sin22α2sin22α3=[1(1cosα1)eτ1/T1]sinα2sin22α3=sinα1cos22α2sin22α3(4.46a)(4.46b)(4.46c)(4.46d)(4.46e)

  • A1A_1A1: 第一自旋回波 (SE1) 的幅度。TE=2τ1T_E = 2\tau_1TE=2τ1,源于脉冲1和脉冲2对横向磁化的直接作用。
  • A2A_2A2: 受激回波 (STE) 的幅度。TE=2τ1+τ2T_E = 2\tau_1+\tau_2TE=2τ1+τ2,这是最关键的一个系数!
    • e−τ2/T1e^{-\tau_{2}/T_{1}}eτ2/T1: 这个因子是受激回波的标志。它表明该回波的磁化在 τ2\tau_2τ2 期间是以纵向磁化的形式“存储”的,因此其强度受 T1T_1T1 弛豫(而非 T2T_2T2)调制。这使得受激回波在长延迟时间下可能比其他回波更显著。
  • A3A_3A3: 次级回波的幅度。TE=2τ2T_E = 2\tau_2TE=2τ2,负号表示该回波与主自旋回波相位相反。
  • A4A_4A4: 第二自旋回波 (SE2) 的幅度。TE=τ1+2τ2T_E = \tau_1 + 2\tau_2TE=τ1+2τ2,源于脉冲2产生的FID被脉冲3重聚焦。
  • A5A_5A5: 第三自旋回波 (SE3) 的幅度。TE=2(τ1+τ2)T_E = 2(\tau_1 + \tau_2)TE=2(τ1+τ2),源于脉冲1产生的FID被脉冲3重聚焦。

回波信号的通用形式

将所有回波信号统一为一个简洁、通用的数学表达式:
S(t)=AE∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−TE)dω(4.47) S(t)=A_{E}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-T_{E})}d\omega \tag {4.47} S(t)=AEρ(ω)et/T2(ω)e(tTE)dω(4.47)
其中:

  • AEA_EAE: 回波幅度系数。一个复数,包含了所有与脉冲序列参数(翻转角 αi\alpha_iαi、时间间隔 τi\tau_iτi)和弛豫时间 (T1,T2T_1, T_2T1,T2) 相关的调制因素。公式 (4.46a-e) 是 AEA_EAE 的具体例子。
  • e−t/T2(ω)e^{-t/T_{2}(\omega)}et/T2(ω): T2T_2T2 弛豫衰减因子。描述了信号幅度随时间的指数衰减,提供了组织的 T2T_2T2 对比度。
  • e−iω(t−TE)e^{-i\omega(t-T_{E})}e(tTE): 相位演化因子。这是回波形成的核心。
    • t=TEt = T_Et=TE 时,此项为 e0=1e^{0} = 1e0=1,所有频率成分同相位,信号达到最大值(回波峰)。
    • t≠TEt \neq T_Et=TE 时,质子群失相,信号衰减。
http://www.dtcms.com/a/391550.html

相关文章:

  • 栈的主要知识
  • question:使用同一请求数据且渲染顺序不确定时复用
  • Redis群集三种模式介绍和创建
  • 【LeetCode 每日一题】1935. 可以输入的最大单词数
  • eeprom和flash的区别
  • [vibe code追踪] 分支图可视化 | SVG画布 | D3.js
  • [硬件电路-264]:数字电路的电源系统的主要特性包括哪些
  • 算法题(212):01背包(空间优化)
  • TP4054和TP4056对比
  • AD5165(超低功耗逻辑电平数字电位器)芯片的详细用法
  • 38、多模态模型基础实现:视觉与语言的智能融合
  • 租赁合同管理系统如何使用?功能深度解析
  • 构建高质量RAG知识库,文档解析破解AI应用的数据质量难题
  • CS课程项目设计17:基于Face_Recognition人脸识别库的课堂签到系统
  • 跨平台开发地图:客户端技术选型指南 | 2025年9月
  • 隐私保护 vs 技术创新:AI 时代数据安全的边界在哪里?
  • 如何在网页开发中建立数字信任?
  • 网站模版 网站建站 网站设计源码模板
  • 访问飞牛NAS的时候为啥要加:5667?不能隐藏它吗?啥是重定向?HTTPS为啥是红的?
  • 端口切换导致 mcp 和 gimini cli 连接失败
  • (论文速读)KL-CLIP:零采样异常分割的K均值学习模型
  • FlexE实践笔记
  • 搭建Redis群集模式
  • 视觉SLAM第13讲:实践,设计SLAM系统
  • 【论文阅读】WebWalker: Benchmarking LLMs in Web Traversal
  • 页面水印记录
  • 快速学习kotlin并上手 Android 开发指南
  • Linux进程控制(下):进程等待和进程替换
  • 如何检查数据库是否处于恢复模式
  • AI一周资讯 250913-250919