磁共振成像原理(理论)9:射频回波 (RF Echoes)-三脉冲回波(2)
接着上一篇文章继续推导。
t=(τ1+τ2)+t = (\tau_1+\tau_2)_+t=(τ1+τ2)+:横向磁化分量演变:
在第三个脉冲 (α3\alpha_3α3, 假设沿 y′y'y′ 轴施加) 之后瞬间 (t=(τ1+τ2)+t = (\tau_1+\tau_2)_+t=(τ1+τ2)+),磁化矢量的表达式如下:
x′x'x′方向磁化分量:
Mx′[ω,(τ1+τ2)+]=Mx′(ω,(τ1+τ2)−)cosα3−Mz′(ω,(τ1+τ2)−)sinα3=Mx′(ω,(τ1+τ2))cosα3−Mz′(ω,(τ1+τ2))sinα3=−Mz0(ω)sinα1cos2α22cosα3cosω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1sin2α22cosα3cosω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2cosα3cosωτ2e−τ2/T2−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1(4.41)
\begin{aligned}
M_{x^{\prime}}\left[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}\right]
&=M_{x^{\prime}}(\omega,(\tau_{1}+\tau_{2})_- )\cos\alpha_3 - M_{z^{\prime}}(\omega,(\tau_{1}+\tau_{2})_-)\sin\alpha_3\\
&=M_{x^{\prime}}(\omega,(\tau_{1}+\tau_{2}) )\cos\alpha_3 - M_{z^{\prime}}(\omega,(\tau_{1}+\tau_{2}))\sin\alpha_3\\
&= -M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\
& +M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\
& -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\cos\alpha_{3}\cos\omega\tau_{2} e^{-\tau_{2} /T_{2}} \\
& -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3} \\
& +M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}\qquad (4.41)
\end{aligned}
Mx′[ω,(τ1+τ2)+]=Mx′(ω,(τ1+τ2)−)cosα3−Mz′(ω,(τ1+τ2)−)sinα3=Mx′(ω,(τ1+τ2))cosα3−Mz′(ω,(τ1+τ2))sinα3=−Mz0(ω)sinα1cos22α2cosα3cosω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1sin22α2cosα3cosω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2cosα3cosωτ2e−τ2/T2−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1(4.41)
y′y'y′方向磁化分量保持不变(因为脉冲是y′y'y′方向),仍为(4.39),重写如下
My′[ω,(τ1+τ2)+]=Mz0(ω)sinα1cos2α22sinω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin2α22sinω(τ2−τ1)e−(τ1+τ2)/T2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sinωτ2e−τ2/T2(4.39)
\begin{aligned}
M_{y^{\prime}}\left[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}\right]
= & M_{z}^{0}(\omega) \sin \alpha_{1} \cos ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}} \\
& -M_{z}^{0}(\omega) \sin \alpha_{1} \sin ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}} \\
& +M_{z}^{0}(\omega)\left[1-\left(1-\cos \alpha_{1}\right) e^{-\tau_{1} / T_{1}}\right] \sin \alpha_{2} \sin \omega \tau_{2} e^{-\tau_{2} / T_{2}}
\end{aligned}
\tag{4.39}
My′[ω,(τ1+τ2)+]=Mz0(ω)sinα1cos22α2sinω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin22α2sinω(τ2−τ1)e−(τ1+τ2)/T2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sinωτ2e−τ2/T2(4.39)
z′z'z′方向磁化分量:
Mz′[ω,(τ1+τ2)+]=Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]cosα3−Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1+Mz0(ω)sinα1cos2α22sinα3cosω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin2α22sinα3cosω(τ2−τ1)e−(τ1+τ2)/T2(4.42)+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sinα3cosωτ2e−τ2/T2 (4.42)
\begin{aligned}
M_{z^{\prime}}\left[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}\right]
= & M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\cos\alpha_{3} \\
& -M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \\
& +M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\sin\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\
& -M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\sin\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \qquad (4.42)\\
& +M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{2} e^{-\tau_{2} /T_{2}}\
\end{aligned}
\tag{4.42}
Mz′[ω,(τ1+τ2)+]=Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]cosα3−Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1+Mz0(ω)sinα1cos22α2sinα3cosω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin22α2sinα3cosω(τ2−τ1)e−(τ1+τ2)/T2(4.42)+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sinα3cosωτ2e−τ2/T2 (4.42)
将x′x'x′方向磁化分量和y′y'y′方向磁化分量合并成复数形式,得到
Mx′y′[ω,(τ1+τ2)+]=Mx′(ω,(τ1+τ2)+)+iMy′(ω,(τ1+τ2)+)={−Mz0(ω)sinα1cos2α22cosα3cosω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1sin2α22cosα3cosω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2cosα3cosωτ2e−τ2/T2−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1}+i{Mz0(ω)sinα1cos2α22sinω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin2α22sinω(τ2−τ1)e−(τ1+τ2)/T2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sinωτ2e−τ2/T2}=−Mz0(ω)sinα1cos2α22e−(τ1+τ2)/T2[cosα3cosω(τ1+τ2)−isinω(τ1+τ2)]++Mz0(ω)sinα1sin2α22e−(τ1+τ2)/T2[cosα3cosω(τ2−τ1)−isinω(τ2−τ1)]+−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2[cosα3cosωτ2−isinωτ2]+−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1} \begin{aligned} &M_{x'y'}[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}] = \textcolor{red}{M_{x'}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+})}+i \textcolor{blue}{{M_{y'}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+})}}\\ =&\{ \textcolor{red}{-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\ & \textcolor{red}{+M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\ & \textcolor{red}{-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\cos\alpha_{3}\cos\omega\tau_{2} e^{-\tau_{2} /T_{2}}} \\ & \textcolor{red}{-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3}} \\ & \textcolor{red}{+M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}} \} \\ &+i\{ \textcolor{blue}{M_{z}^{0}(\omega) \sin \alpha_{1} \cos ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{1}+\tau_{2}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}} }\\ & \textcolor{blue}{-M_{z}^{0}(\omega) \sin \alpha_{1} \sin ^{2} \frac{\alpha_{2}}{2} \sin \omega\left(\tau_{2}-\tau_{1}\right) e^{-\left(\tau_{1}+\tau_{2}\right) / T_{2}}} \\ & \textcolor{blue}{+M_{z}^{0}(\omega)\left[1-\left(1-\cos \alpha_{1}\right) e^{-\tau_{1} / T_{1}}\right] \sin \alpha_{2} \sin \omega \tau_{2} e^{-\tau_{2} / T_{2}} }\}\\ \\ =& -M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right)-i\sin\omega(\tau_{1}+\tau_{2})] + \\ &+M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) -i\sin\omega\left(\tau_{2}-\tau_{1}\right)]+\\ &-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}[\cos\alpha_{3}\cos\omega\tau_{2} -i\sin\omega \tau_2]+\\ & -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3} \\ & +M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \} \\ \end{aligned} ==Mx′y′[ω,(τ1+τ2)+]=Mx′(ω,(τ1+τ2)+)+iMy′(ω,(τ1+τ2)+){−Mz0(ω)sinα1cos22α2cosα3cosω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1sin22α2cosα3cosω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2cosα3cosωτ2e−τ2/T2−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1}+i{Mz0(ω)sinα1cos22α2sinω(τ1+τ2)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin22α2sinω(τ2−τ1)e−(τ1+τ2)/T2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sinωτ2e−τ2/T2}−Mz0(ω)sinα1cos22α2e−(τ1+τ2)/T2[cosα3cosω(τ1+τ2)−isinω(τ1+τ2)]++Mz0(ω)sinα1sin22α2e−(τ1+τ2)/T2[cosα3cosω(τ2−τ1)−isinω(τ2−τ1)]+−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2[cosα3cosωτ2−isinωτ2]+−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3+Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1}
其中第一项为:
−Mz0(ω)sinα1cos2α22e−(τ1+τ2)/T2[cosα3cosω(τ1+τ2)−isinω(τ1+τ2)]=−Mz0(ω)sinα1cos2α22e−(τ1+τ2)/T2[(cos2α32−sin2α32)cosω(τ1+τ2)−i(cos2α32+sin2α32)sinω(τ1+τ2)]=−Mz0(ω)sinα1cos2α22e−(τ1+τ2)/T2{cos2α32[cosω(τ1+τ2)−isinω(τ1+τ2)]−sin2α32[cosω(τ1+τ2)+isinω(τ1+τ2)]}=−Mz0(ω)sinα1cos2α22e−(τ1+τ2)/T2cos2α32e−iω(τ1+τ2)+Mz0(ω)sinα1cos2α22e−(τ1+τ2)/T2sin2α32eiω(τ1+τ2)
\begin{aligned}
&-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{1}+\tau_{2}\right)-i\sin\omega(\tau_{1}+\tau_{2})] \\
=&-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[(\cos^2 \frac {\alpha_3}{2}-\sin^2 \frac {\alpha_3}{2})\cos\omega\left(\tau_{1}+\tau_{2}\right)\\
&-i(\cos^2 \frac {\alpha_3}{2}+\sin^2 \frac {\alpha_3}{2})\sin\omega(\tau_{1}+\tau_{2})] \\
=&-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\{\cos^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{1}+\tau_{2}\right)-i\sin\omega\left(\tau_{1}+\tau_{2}\right)]\\
&-\sin^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{1}+\tau_{2}\right)+i\sin\omega\left(\tau_{1}+\tau_{2}\right)]\} \\
=&-M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\cos^2 \frac {\alpha_3}{2}e^{-i\omega(\tau_1+\tau_2)} \\
& +M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\sin^2 \frac {\alpha_3}{2}e^{i\omega(\tau_1+\tau_2)}
\end{aligned}
===−Mz0(ω)sinα1cos22α2e−(τ1+τ2)/T2[cosα3cosω(τ1+τ2)−isinω(τ1+τ2)]−Mz0(ω)sinα1cos22α2e−(τ1+τ2)/T2[(cos22α3−sin22α3)cosω(τ1+τ2)−i(cos22α3+sin22α3)sinω(τ1+τ2)]−Mz0(ω)sinα1cos22α2e−(τ1+τ2)/T2{cos22α3[cosω(τ1+τ2)−isinω(τ1+τ2)]−sin22α3[cosω(τ1+τ2)+isinω(τ1+τ2)]}−Mz0(ω)sinα1cos22α2e−(τ1+τ2)/T2cos22α3e−iω(τ1+τ2)+Mz0(ω)sinα1cos22α2e−(τ1+τ2)/T2sin22α3eiω(τ1+τ2)
第二项为:
Mz0(ω)sinα1sin2α22e−(τ1+τ2)/T2[cosα3cosω(τ2−τ1)−isinω(τ2−τ1)]=Mz0(ω)sinα1sin2α22e−(τ1+τ2)/T2[(cos2α32−sin2α32)cosω(τ2−τ1)−i(cos2α32+sin2α32)sinω(τ2−τ1)]=Mz0(ω)sinα1sin2α22e−(τ1+τ2)/T2{cos2α32[cosω(τ2−τ1)−isinω(τ2−τ1)]−sin2α32[cosω(τ2−τ1)+isinω(τ2−τ1)]}=Mz0(ω)sinα1sin2α22e−(τ1+τ2)/T2cos2α32e−iω(τ2−τ1)−Mz0(ω)sinα1sin2α22e−(τ1+τ2)/T2sin2α32eiω(τ2−τ1)
\begin{aligned}
&M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[\cos\alpha_{3}\cos\omega\left(\tau_{2}-\tau_{1}\right) -i\sin\omega\left(\tau_{2}-\tau_{1}\right)]\\
=&M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}[(\cos^2 \frac {\alpha_3}{2}-\sin^2 \frac {\alpha_3}{2})\cos\omega\left(\tau_{2}-\tau_{1}\right)\\
&-i(\cos^2 \frac {\alpha_3}{2}+\sin^2 \frac {\alpha_3}{2})\sin\omega(\tau_{2}-\tau_{1})]\\
=&M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\{\cos^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{2}-\tau_{1}\right)-i\sin\omega\left(\tau_{2}-\tau_{1}\right)]\\
&-\sin^2 \frac {\alpha_3}{2}[\cos\omega\left(\tau_{2}-\tau_{1}\right)+i\sin\omega\left(\tau_{2}-\tau_{1}\right)]\} \\
=&M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\cos^2 \frac {\alpha_3}{2}e^{-i\omega(\tau_2-\tau_1)} \\
& -M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}\sin^2 \frac {\alpha_3}{2}e^{i\omega(\tau_2-\tau_1)}
\end{aligned}
===Mz0(ω)sinα1sin22α2e−(τ1+τ2)/T2[cosα3cosω(τ2−τ1)−isinω(τ2−τ1)]Mz0(ω)sinα1sin22α2e−(τ1+τ2)/T2[(cos22α3−sin22α3)cosω(τ2−τ1)−i(cos22α3+sin22α3)sinω(τ2−τ1)]Mz0(ω)sinα1sin22α2e−(τ1+τ2)/T2{cos22α3[cosω(τ2−τ1)−isinω(τ2−τ1)]−sin22α3[cosω(τ2−τ1)+isinω(τ2−τ1)]}Mz0(ω)sinα1sin22α2e−(τ1+τ2)/T2cos22α3e−iω(τ2−τ1)−Mz0(ω)sinα1sin22α2e−(τ1+τ2)/T2sin22α3eiω(τ2−τ1)
第三项为:
−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2[cosα3cosωτ2−isinωτ2]=−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2[(cos2α32−sin2α32)cosωτ2−i(cos2α32+sin2α32)sinωτ2]=−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2{cos2α32(cosωτ2−isinωτ2)+−sin2α32(cosωτ2+isinωτ2)}=−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2cos2α32e−iωτ2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2sin2α32eiωτ2
\begin{aligned}
&-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}[\cos\alpha_{3}\cos\omega\tau_{2} -i\sin\omega \tau_2]\\
=&-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}[(\cos^2 \frac {\alpha_3}{2}-\sin^2 \frac {\alpha_3}{2})\cos\omega\tau_{2}\\
&-i(\cos^2 \frac {\alpha_3}{2}+\sin^2 \frac {\alpha_3}{2})\sin\omega\tau_{2}]\\
=&-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}\{\cos^2 \frac {\alpha_3}{2}(\cos\omega\tau_2-i\sin\omega\tau_2)+ \\
&-\sin^2 \frac {\alpha_3}{2}(\cos\omega\tau_2+i\sin\omega\tau_2)
\}\\
=&-M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}\cos^2 \frac {\alpha_3}{2}e^{-i\omega\tau_2}\\
&+M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}e^{-\tau_{2} /T_{2}}\sin^2 \frac {\alpha_3}{2}e^{i\omega\tau_2}\\
\end{aligned}
===−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2[cosα3cosωτ2−isinωτ2]−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2[(cos22α3−sin22α3)cosωτ2−i(cos22α3+sin22α3)sinωτ2]−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2{cos22α3(cosωτ2−isinωτ2)+−sin22α3(cosωτ2+isinωτ2)}−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2cos22α3e−iωτ2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2e−τ2/T2sin22α3eiωτ2
第五项为:
Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T1=12Mz0(ω)sinα1sinα2sinα3e−τ1/T2e−τ2/T1eiωτ1+12Mz0(ω)sinα1sinα2sinα3e−τ1/T2e−τ2/T1e−iωτ1
\begin{aligned}
&M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}\cos\omega\tau_{1} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \\
=&\frac{1}{2}M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}e^{i\omega\tau_1}+\\
&\frac{1}{2}M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}e^{-i\omega\tau_1}
\end{aligned}
=Mz0(ω)sinα1sinα2sinα3cosωτ1e−τ1/T2e−τ2/T121Mz0(ω)sinα1sinα2sinα3e−τ1/T2e−τ2/T1eiωτ1+21Mz0(ω)sinα1sinα2sinα3e−τ1/T2e−τ2/T1e−iωτ1
将上面的式子全部合并,得到如下表达式:
Mxy[ω,(τ1+τ2)+]=Mx(ω,(τ1+τ2)+)+iMy(ω,(τ1+τ2)+)=−Mz0(ω)sinα1cos2α22cos2α32e−iω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1cos2α22sin2α32eiω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1sin2α22cos2α32e−iω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin2α22sin2α32eiω(τ2−τ1)e−(τ1+τ2)/T2+12Mz0(ω)sinα1sinα2sinα3e−iωτ1e−τ1/T2e−τ2/T1(4.43)+12Mz0(ω)sinα1sinα2sinα3eiωτ1e−τ1/T2e−τ2/T1−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2cos2α32e−iωτ2e−τ2/T2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sin2α32eiωτ2e−τ2/T2−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3(4.43)
\begin{aligned}
M_{x y}[\omega,\left(\tau_{1}+\tau_{2}\right)_{+}]
= & M_{x}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+})+i M_{y}(\omega,\left(\tau_{1}+\tau_{2}\right)_{+}) \\
= & -M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\cos^{2}\frac{\alpha_{3}}{2} e^{-i\omega\left(\tau_{1}+\tau_{2}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}} \\
& \textcolor{red}{+M_{z}^{0}(\omega)\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2} e^{i\omega\left(\tau_{1}+\tau_{2}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\
& \textcolor{orange}{+M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\cos^{2}\frac{\alpha_{3}}{2} e^{-i\omega\left(\tau_{2}-\tau_{1}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\
& \textcolor{green}{-M_{z}^{0}(\omega)\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2} e^{i\omega\left(\tau_{2}-\tau_{1}\right)} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{2}}} \\
& +\frac{1}{2} M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{-i\omega\tau_{1}} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}} \qquad (4.43) \\
& \textcolor{blue}{+\frac{1}{2} M_{z}^{0}(\omega)\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3} e^{i\omega\tau_{1}} e^{-\tau_{1} /T_{2}}e^{-\tau_{2} /T_{1}}} \\
& -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\cos^{2}\frac{\alpha_{3}}{2} e^{-i\omega\tau_{2}} e^{-\tau_{2} /T_{2}} \\
& \textcolor{purple}{+M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{1}\right) e^{-\tau_{1} /T_{1}}\right]\sin\alpha_{2}\sin^{2}\frac{\alpha_{3}}{2} e^{i\omega\tau_{2}} e^{-\tau_{2} /T_{2}}} \\
& -M_{z}^{0}(\omega)\left[1-\left(1-\cos\alpha_{2}\right) e^{-\tau_{2} /T_{1}}-\left(1-\cos\alpha_{1}\right)\cos\alpha_{2} e^{-\left(\tau_{1}+\tau_{2}\right) /T_{1}}\right]\sin\alpha_{3}
\end{aligned}
\tag{4.43}
Mxy[ω,(τ1+τ2)+]==Mx(ω,(τ1+τ2)+)+iMy(ω,(τ1+τ2)+)−Mz0(ω)sinα1cos22α2cos22α3e−iω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1cos22α2sin22α3eiω(τ1+τ2)e−(τ1+τ2)/T2+Mz0(ω)sinα1sin22α2cos22α3e−iω(τ2−τ1)e−(τ1+τ2)/T2−Mz0(ω)sinα1sin22α2sin22α3eiω(τ2−τ1)e−(τ1+τ2)/T2+21Mz0(ω)sinα1sinα2sinα3e−iωτ1e−τ1/T2e−τ2/T1(4.43)+21Mz0(ω)sinα1sinα2sinα3eiωτ1e−τ1/T2e−τ2/T1−Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2cos22α3e−iωτ2e−τ2/T2+Mz0(ω)[1−(1−cosα1)e−τ1/T1]sinα2sin22α3eiωτ2e−τ2/T2−Mz0(ω)[1−(1−cosα2)e−τ2/T1−(1−cosα1)cosα2e−(τ1+τ2)/T1]sinα3(4.43)
t>τ1+τ2t > \tau_1+\tau_2t>τ1+τ2:横向磁化分量演变:
t≥τ1+τ2t \geq \tau_{1}+\tau_{2}t≥τ1+τ2,横向磁化分量演变:
Mx′y′(ω,t)=Mx′y′[ω,(τ1+τ2)+]e−(t−τ1−τ2)/T2e−iω(t−τ1−τ2)(4.44)
M_{x^{\prime}y^{\prime}}(\omega,t)=M_{x^{\prime}y^{\prime}}[\omega,(\tau_{1}+\tau_{2})_{+}]e^{-(t-\tau_{1}-\tau_{2})/T_{2}}e^{-i\omega(t-\tau_{1}-\tau_{2})} \tag {4.44}
Mx′y′(ω,t)=Mx′y′[ω,(τ1+τ2)+]e−(t−τ1−τ2)/T2e−iω(t−τ1−τ2)(4.44)
- Mx′y′[ω,(τ1+τ2)+]M_{x^{\prime}y^{\prime}}[\omega,(\tau_{1}+\tau_{2})_{+}]Mx′y′[ω,(τ1+τ2)+]: 这是初始条件,代表第三个脉冲施加后瞬间 (t=(τ1+τ2)+t = (\tau_1 + \tau_2)_+t=(τ1+τ2)+) 的复横向磁化。其具体形式由公式 (4.43) 给出,包含了所有由前三个脉冲共同作用产生的磁化分量。
- e−(t−τ1−τ2)/T2e^{-(t-\tau_{1}-\tau_{2})/T_{2}}e−(t−τ1−τ2)/T2: T2T_2T2 弛豫衰减因子。表示从第三脉冲结束时刻 (t0=τ1+τ2t_0 = \tau_1+\tau_2t0=τ1+τ2) 开始,横向磁化以时间常数 T2T_2T2 进行指数衰减。
- e−iω(t−τ1−τ2)e^{-i\omega(t-\tau_{1}-\tau_{2})}e−iω(t−τ1−τ2): 进动因子。表示在旋转坐标系中,磁化矢量以角频率 ω\omegaω 继续绕z′z'z′轴顺时针进动。(t−τ1−τ2)(t-\tau_{1}-\tau_{2})(t−τ1−τ2) 表示时间从 t0=τ1+τ2t_0 = \tau_1+\tau_2t0=τ1+τ2 开始计算。
将公式 (4.43) 代入 (4.44),将得到五类回波信号的时域表达式
S1(t)=A1∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ1)dω(4.45a)S2(t)=A2∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ1−τ2)dω(4.45b)S3(t)=A3∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ2)dω(4.45c)S4(t)=A4∫−∞∞ρ(ω)e−t/T2(ω)e−iω[t−(τ1+2τ2)]dω(4.45d)S5(t)=A5∫−∞∞ρ(ω)e−t/T2(ω)e−iω[t−2(τ1+τ2)]dω(4.45e)
\begin{aligned}
S_{1}(t) &= \textcolor{orange}{A_{1}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-2\tau_{1})}d\omega} \qquad &(4.45a) \\
S_{2}(t) &= \textcolor{blue}{A_{2}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-2\tau_{1}-\tau_2)}d\omega} \qquad &(4.45b) \\
S_{3}(t) &= \textcolor{green}{A_{3}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-2\tau_{2})}d\omega} \qquad &(4.45c) \\
S_{4}(t) &= \textcolor{purple}{A_{4}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega[t-(\tau_{1}+2\tau_{2})]}d\omega} \qquad &(4.45d) \\
S_{5}(t)&= \textcolor{red} {A_{5}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega[t-2(\tau_{1}+\tau_{2})]}d\omega} \qquad &(4.45e)
\end{aligned}
S1(t)S2(t)S3(t)S4(t)S5(t)=A1∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ1)dω=A2∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ1−τ2)dω=A3∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−2τ2)dω=A4∫−∞∞ρ(ω)e−t/T2(ω)e−iω[t−(τ1+2τ2)]dω=A5∫−∞∞ρ(ω)e−t/T2(ω)e−iω[t−2(τ1+τ2)]dω(4.45a)(4.45b)(4.45c)(4.45d)(4.45e)
其幅值满足:
A1=sinα1sin2α22cos2α32(4.46a)A2=12sinα1sinα2sinα3e−τ2/T1(4.46b)A3=−sinα1sin2α22sin2α32(4.46c)A4=[1−(1−cosα1)e−τ1/T1]sinα2sin2α32(4.46d)A5=sinα1cos2α22sin2α32(4.46e)
\begin{aligned}
A_{1} &= \textcolor{orange}{\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2} cos^{2}\frac{\alpha_{3}}{2}}\qquad &(4.46a) \\
A_{2} &= \textcolor{blue}{\frac{1}{2}\sin\alpha_{1}\sin\alpha_{2}\sin\alpha_{3}e^{-\tau_{2}/T_{1}}} \qquad &(4.46b) \\
A_{3} &= \textcolor{green}{-\sin\alpha_{1}\sin^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2}} \qquad &(4.46c) \\
A_{4} &= \textcolor{purple}{[1-(1-\cos\alpha_{1})e^{-\tau_{1}/T_{1}}]\sin\alpha_{2}\sin^{2}\frac{\alpha_{3}}{2}} \qquad &(4.46d) \\
A_{5} &= \textcolor{red} {\sin\alpha_{1}\cos^{2}\frac{\alpha_{2}}{2}\sin^{2}\frac{\alpha_{3}}{2}} \qquad &(4.46e)
\end{aligned}
A1A2A3A4A5=sinα1sin22α2cos22α3=21sinα1sinα2sinα3e−τ2/T1=−sinα1sin22α2sin22α3=[1−(1−cosα1)e−τ1/T1]sinα2sin22α3=sinα1cos22α2sin22α3(4.46a)(4.46b)(4.46c)(4.46d)(4.46e)
- A1A_1A1: 第一自旋回波 (SE1) 的幅度。TE=2τ1T_E = 2\tau_1TE=2τ1,源于脉冲1和脉冲2对横向磁化的直接作用。
- A2A_2A2: 受激回波 (STE) 的幅度。TE=2τ1+τ2T_E = 2\tau_1+\tau_2TE=2τ1+τ2,这是最关键的一个系数!
- e−τ2/T1e^{-\tau_{2}/T_{1}}e−τ2/T1: 这个因子是受激回波的标志。它表明该回波的磁化在 τ2\tau_2τ2 期间是以纵向磁化的形式“存储”的,因此其强度受 T1T_1T1 弛豫(而非 T2T_2T2)调制。这使得受激回波在长延迟时间下可能比其他回波更显著。
- A3A_3A3: 次级回波的幅度。TE=2τ2T_E = 2\tau_2TE=2τ2,负号表示该回波与主自旋回波相位相反。
- A4A_4A4: 第二自旋回波 (SE2) 的幅度。TE=τ1+2τ2T_E = \tau_1 + 2\tau_2TE=τ1+2τ2,源于脉冲2产生的FID被脉冲3重聚焦。
- A5A_5A5: 第三自旋回波 (SE3) 的幅度。TE=2(τ1+τ2)T_E = 2(\tau_1 + \tau_2)TE=2(τ1+τ2),源于脉冲1产生的FID被脉冲3重聚焦。
回波信号的通用形式
将所有回波信号统一为一个简洁、通用的数学表达式:
S(t)=AE∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−TE)dω(4.47)
S(t)=A_{E}\int_{-\infty}^{\infty}\rho(\omega)e^{-t/T_{2}(\omega)}e^{-i\omega(t-T_{E})}d\omega \tag {4.47}
S(t)=AE∫−∞∞ρ(ω)e−t/T2(ω)e−iω(t−TE)dω(4.47)
其中:
- AEA_EAE: 回波幅度系数。一个复数,包含了所有与脉冲序列参数(翻转角 αi\alpha_iαi、时间间隔 τi\tau_iτi)和弛豫时间 (T1,T2T_1, T_2T1,T2) 相关的调制因素。公式 (4.46a-e) 是 AEA_EAE 的具体例子。
- e−t/T2(ω)e^{-t/T_{2}(\omega)}e−t/T2(ω): T2T_2T2 弛豫衰减因子。描述了信号幅度随时间的指数衰减,提供了组织的 T2T_2T2 对比度。
- e−iω(t−TE)e^{-i\omega(t-T_{E})}e−iω(t−TE): 相位演化因子。这是回波形成的核心。
- 当 t=TEt = T_Et=TE 时,此项为 e0=1e^{0} = 1e0=1,所有频率成分同相位,信号达到最大值(回波峰)。
- 当 t≠TEt \neq T_Et=TE 时,质子群失相,信号衰减。