linux中的redis
文章目录
- 一、关系型数据库 vs 非关系型数据库
- 1. 关系型数据库(SQL)
- 2. 非关系型数据库(NoSQL)
- 二、Redis 简介
- 三、Redis 安装与部署
- 1. 安装流程
- 2. 配置文件参数
- 四、Redis 命令工具
- 五、Redis 常用命令
- 1. 基本操作
- 2. 模糊查询
- 3. 判断/删除
- 4. 重命名
- 5.是查看当前数据库中 key 的数目。
- 6、设置以及查看密码
- 7. Redis 多数据库常用命令
- 六、Redis 高可用
- 1. 持久化
- 2. 主从复制
- 3. 哨兵(Sentinel)
- 4. Cluster 集群
- 七、持久化机制
- 1. RDB 持久化
- 1.1 RDB(快照)
- 1.2 触发条件
- 1.2.1 手动触发
- 1.2.2 自动触发
- 1.3 执行流程
- 1.4 启动时加载
- 2. AOF 持久化
- 2.1 开启AOF
- 2.2 执行流程
- (1)命令追加(append) ky20 qijiam 内存
- (2)文件写入(write)和文件同步(sync)
- (3)文件重写(rewrite)
- 3. 启动时加载
- 4. RDB和AOF的优缺点
- 4.1 RDB持久化
- 4.2 AOF持久化
一、关系型数据库 vs 非关系型数据库
1. 关系型数据库(SQL)
- 特点:
- 表格模型(行 + 列)
- 使用 SQL 语言
- 数据必须符合表结构
- 强事务 ACID
- 纵向扩展(升级硬件)
- 常见产品:MySQL、Oracle、PostgreSQL
- 举例:
银行转账:A 转账给 B,必须保证 A 扣钱成功的同时 B 收钱成功(事务保证一致性)。
2. 非关系型数据库(NoSQL)
- 特点:
- 键值对 / 文档 / 图结构存储
- 无需固定表结构
- 高并发、高可扩展
- 横向扩展(增加服务器节点)
- 常见产品:Redis、MongoDB、HBase、Memcached
- 举例:
微信聊天:一条消息可能是文字、图片、语音,不适合用表格存储,更适合用文档型数据库。
二、Redis 简介
- 定义:开源、C 语言编写、基于内存、支持持久化的键值数据库。
- 特性:
- 高性能:读取可达 110000 次/s,写入 81000 次/s
- 数据结构丰富:string、list、hash、sets、sorted sets
- 支持持久化:数据可保存到磁盘
- 原子性:单线程避免并发锁问题
- 主从复制:数据备份
- 为什么快?
- 纯内存操作 → 避免磁盘 IO
- 单线程 → 避免锁开销
- I/O 多路复用 → 高并发
- 举例:
- 秒杀活动:库存扣减、订单写入,放到 Redis 避免数据库压力。
- 抖音热搜榜:用
sorted set
存储关键词 + 热度,实时排序。
注:在 Redis 6.0 中新增加的多线程也只是针对处理网络请求过程采用了多线性,而数据的读写命令,仍然是单线程处理的。
Redis 中文学习
https://www.tkcnn.com/redis/Getting-started.html
官网: https://redis.io/docs/latest/get-started/
三、Redis 安装与部署
redis 下载地址:http://download.redis.io/releases/
1. 安装流程
systemctl stop firewalld
setenforce 0
systemctl stop iptables
yum install -y gcc gcc-c++ make
tar zxvf redis-5.0.7.tar.gz -C /opt/
cd /opt/redis-5.0.7/
make && make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。#执行软件包提供的 install_server.sh 脚本文件设置 Redis 服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
...... #一直回车
Please select the redis executable path [] /usr/local/redis/bin/redis-server #需要手动修改为 /usr/local/redis/bin/redis-server ,注意要一次性正确输入-----------------------------------------------------------------------------------------
Selected config:
Port : 6379 #默认侦听端口为6379
Config file : /etc/redis/6379.conf #配置文件路径
Log file : /var/log/redis_6379.log #日志文件路径
Data dir : /var/lib/redis/6379 #数据文件路径
Executable : /usr/local/redis/bin/redis-server #可执行文件路径
Cli Executable : /usr/local/bin/redis-cli #客户端命令工具
-----------------------------------------------------------------------------------------
Selected config:
Port : 6379 #默认侦听端口为6379
Config file : /etc/redis/6379.conf #配置文件路径
Log file : /var/log/redis_6379.log #日志文件路径
Data dir : /var/lib/redis/6379 #数据文件路径
Executable : /usr/local/redis/bin/redis-server #可执行文件路径
Cli Executable : /usr/local/bin/redis-cli #客户端命令工具
----------------------------------------------------------------------------------------------------------#把redis的可执行程序文件放入路径环境变量的目录中便于系统识别
ln -s /usr/local/redis/bin/* /usr/local/bin/#当 install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认监听端口为 6379
netstat -natp | grep redis#Redis 服务控制
/etc/init.d/redis_6379 stop #停止
/etc/init.d/redis_6379 start #启动
/etc/init.d/redis_6379 restart #重启
/etc/init.d/redis_6379 status #状态#修改配置 /etc/redis/6379.conf 参数
vim /etc/redis/6379.conf
bind 127.0.0.1 192.168.10.23 #70行,添加 监听的主机地址
port 6379 #93行,Redis默认的监听端口
daemonize yes #137行,启用守护进程
pidfile /var/run/redis_6379.pid #159行,指定 PID 文件
loglevel notice #167行,日志级别
logfile /var/log/redis_6379.log #172行,指定日志文件/etc/init.d/redis_6379 restart
2. 配置文件参数
bind 127.0.0.1
→ 指定监听 IPport 6379
→ 默认端口daemonize yes
→ 守护进程模式logfile /var/log/redis.log
→ 日志路径requirepass 123456
→ 密码
举例:
Redis 就像一个仓库 → bind
是仓库大门只允许谁进,port
是大门编号,daemonize
表示仓库是否一直有人值守,requirepass
是仓库的锁。
四、Redis 命令工具
-
redis-server
→ 启动服务 -
redis-cli
→ 客户端工具(命令行工具)##语法:redis-cli -h host -p port -a password-h :指定远程主机 -p :指定 Redis 服务的端口号 -a :指定密码,未设置数据库密码可以省略-a 选项 若不添加任何选项表示,则使用 127.0.0.1:6379 连接本机上的 Redis 数据库redis-cli -h 192.168.10.23 -p 6379
-
redis-benchmark
→ 压力测试- 示例:
redis-benchmark -c 100 -n 100000
→ 100 并发,10 万请求 - 案例:测试 Redis 是否能支撑双十一秒杀
redis-benchmark 是官方自带的 Redis 性能测试工具,可以有效的测试 Redis 服务的性能。 基本的测试语法:redis-benchmark [选项] [选项值]。 -h :指定服务器主机名。 -p :指定服务器端口。 -s :指定服务器 socket -c :指定并发连接数。 -n :指定请求数。 -d :以字节的形式指定 SET/GET 值的数据大小。 -k :1=keep alive 0=reconnect 。 -r :SET/GET/INCR 使用随机 key, SADD 使用随机值。 -P :通过管道传输<numreq>请求。 -q :强制退出 redis。仅显示 query/sec 值。 --csv :以 CSV 格式输出。 -l :生成循环,永久执行测试。 -t :仅运行以逗号分隔的测试命令列表。 -I :Idle 模式。仅打开 N 个 idle 连接并等待。#向 IP 地址为 192.168.10.23、端口为 6379 的 Redis 服务器发送 100 个并发连接与 100000 个请求测试性能 redis-benchmark -h 192.168.10.23 -p 6379 -c 100 -n 100000#测试存取大小为 100 字节的数据包的性能 redis-benchmark -h 192.168.10.161 -p 6379 -q -d 100#测试本机上 Redis 服务在进行 set 与 lpush 操作时的性能 redis-benchmark -t set,lpush -n 100000 -q
- 示例:
-
redis-check-rdb / redis-check-aof
→ 修复持久化文件
五、Redis 常用命令
1. 基本操作
set:存放数据,命令格式为 set key value
get:获取数据,命令格式为 get key127.0.0.1:6379> set teacher zhangsan
OK
127.0.0.1:6379> get teacher
"zhangsan"
2. 模糊查询
# keys 命令可以取符合规则的键值列表,通常情况可以结合*、?等选项来使用。
127.0.0.1:6379> set k1 1
127.0.0.1:6379> set k2 2
127.0.0.1:6379> set k3 3
127.0.0.1:6379> set v1 4
127.0.0.1:6379> set v5 5
127.0.0.1:6379> set v22 5127.0.0.1:6379> KEYS * #查看当前数据库中所有键127.0.0.1:6379> KEYS v* #查看当前数据库中以 v 开头的数据127.0.0.1:6379> KEYS v? #查看当前数据库中以 v 开头后面包含任意一位的数据127.0.0.1:6379> KEYS v?? #查看当前数据库中以 v 开头 v 开头后面包含任意两位的数据
案例:快速查看所有以 user 开头的缓存数据。
3. 判断/删除
# exists 命令可以判断键值是否存在。
127.0.0.1:6379> exists teacher #判断 teacher 键是否存在
(integer) 1 # 1 表示 teacher 键是存在
127.0.0.1:6379> exists tea
(integer) 0 # 0 表示 tea 键不存在# del 命令可以删除当前数据库的指定 key。
127.0.0.1:6379> keys *
127.0.0.1:6379> del v5
127.0.0.1:6379> get v5# type 命令可以获取 key 对应的 value 值类型。
127.0.0.1:6379> type k1
string
案例:检查某个商品是否还在缓存里。
4. 重命名
1)# rename 命令是对已有 key 进行重命名。(覆盖)
命令格式:rename 源key 目标key
使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。在实际使用过程中,建议先用 exists 命令查看目标 key 是否存在,然后再决定是否执行 rename 命令,以避免覆盖重要数据。127.0.0.1:6379> keys v*
1) "v1"
2) "v22"
127.0.0.1:6379> rename v22 v2
OK
127.0.0.1:6379> keys v*
1) "v1"
2) "v2"
127.0.0.1:6379> get v1
"4"
127.0.0.1:6379> get v2
"5"
127.0.0.1:6379> rename v1 v2
OK
127.0.0.1:6379> get v1
(nil)
127.0.0.1:6379> get v2
"4"2)# renamenx 命令的作用是对已有 key 进行重命名,并检测新名是否存在,如果目标 key 存在则不进行重命名。(不覆盖)
命令格式:renamenx 源key 目标key
127.0.0.1:6379> keys *
127.0.0.1:6379> get teacher
"zhangsan"
127.0.0.1:6379> get v2
"4"
127.0.0.1:6379> renamenx v2 teacher
(integer) 0
127.0.0.1:6379> keys *
127.0.0.1:6379> get teacher
"zhangsan"
127.0.0.1:6379> get v2
"4"
案例:公司业务调整,“用户”改成“客户”,但要避免覆盖已有数据。
5.是查看当前数据库中 key 的数目。
####dbsize 命令的作用
127.0.0.1:6379> dbsize
6、设置以及查看密码
#使用config set requirepass yourpassword命令设置密码
127.0.0.1:6379> config set requirepass 123456#使用config get requirepass命令查看密码(一旦设置密码,必须先验证通过密码,否则所有操作不可用)
127.0.0.1:6379> auth 123456
127.0.0.1:6379> config get requirepass
7. Redis 多数据库常用命令
Redis 支持多数据库,Redis 默认情况下包含 16 个数据库,数据库名称是用数字 0-15 来依次命名的。
多数据库相互独立,互不干扰。#多数据库间切换
命令格式:select 序号
使用 redis-cli 连接 Redis 数据库后,默认使用的是序号为 0 的数据库。127.0.0.1:6379> select 10 #切换至序号为 10 的数据库127.0.0.1:6379[10]> select 15 #切换至序号为 15 的数据库127.0.0.1:6379[15]> select 0 #切换至序号为 0 的数据库#多数据库间移动数据
格式:move 键值 序号127.0.0.1:6379> set k1 100
OK
127.0.0.1:6379> get k1
"100"
127.0.0.1:6379> select 1
OK
127.0.0.1:6379[1]> get k1
(nil)
127.0.0.1:6379[1]> select 0 #切换至目标数据库 0
OK
127.0.0.1:6379> get k1 #查看目标数据是否存在
"100"
127.0.0.1:6379> move k1 1 #将数据库 0 中 k1 移动到数据库 1 中
(integer) 1
127.0.0.1:6379> select 1 #切换至目标数据库 1
OK
127.0.0.1:6379[1]> get k1 #查看被移动数据
"100"
127.0.0.1:6379[1]> select 0
OK
127.0.0.1:6379> get k1 #在数据库 0 中无法查看到 k1 的值
(nil)#清除数据库内数据
FLUSHDB :清空当前数据库数据
FLUSHALL :清空所有数据库的数据,慎用!
案例:把“测试数据”放在 1 号库,生产数据在 0 号库,避免混淆。
六、Redis 高可用
1. 持久化
持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
- 保证断电后数据不丢失。
2. 主从复制
-
一主多从,主写从读。
-
案例:微博数据 → 主库负责写入热搜,从库负责提供用户查询,分担压力。
主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
3. 哨兵(Sentinel)
-
主机宕机,自动切换到从机。
-
案例:快递站点 A 停电,哨兵会自动切换到站点 B,业务不中断。
在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
4. Cluster 集群
-
多节点分片存储,解决单机内存限制。
-
案例:淘宝商品太多,单机放不下,按分类拆分到不同 Redis 节点。
通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
七、持久化机制
1. RDB 持久化
1.1 RDB(快照)
- 定期把数据快照保存到磁盘。
- 优点:文件小,恢复快。
- 缺点:可能丢几分钟数据。
- 案例:手机云备份,每天定时备份一次照片。
1.2 触发条件
RDB持久化的触发分为手动触发和自动触发两种
1.2.1 手动触发
save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。
bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。
1.2.2 自动触发
在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。
save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes##其他自动触发机制##
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。
1.3 执行流程
- Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
- 父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
- 父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
- 子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
- 子进程发送信号给父进程表示完成,父进程更新统计信息
1.4 启动时加载
RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败
2. AOF 持久化
RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案
2.1 开启AOF
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes/etc/init.d/redis_6379 restart
2.2 执行流程
由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。
AOF的执行流程包括:
- 命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
- 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
- 文件重写(rewrite):定期重写AOF文件,达到压缩的目的。
(1)命令追加(append) ky20 qijiam 内存
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf
--729--
● appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
总结:一直触发aof的持久化(每执行一次一条语句就触发一次持久化)
● appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
总结: 不进行持久化
● appendfsync everysecond: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
总结:每秒触发一次
(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。
#文件重写之所以能够压缩AOF文件,原因在于:
● 过期的数据不再写入文件
● 无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
● 多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
#文件重写的触发,分为手动触发和自动触发:
● 手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
● 自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
vim /etc/redis/6379.conf
--729--
●auto-aof-rewrite-percentage 100 :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF 关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。
#文件重写的流程如下:
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写
3. 启动时加载
当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的
4. RDB和AOF的优缺点
4.1 RDB持久化
- 优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。
- 缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力
4.2 AOF持久化
与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。
对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。
AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。