当前位置: 首页 > news >正文

动手学深度学习(pytorch版):第七章节—现代卷积神经网络(6)残差网络(ResNet)

1. 残差块

聚焦于神经网络局部:如图所示,假设原始输入x,而希望学出的理想映射为f(x)(作为上方激活函数的输入)。左图虚线框中的部分需要直接拟合出该映射,而右图虚线框中的部分则需要拟合出残差映射。残差映射在现实中往往更容易优化。 以开头提到的恒等映射作为希望学出的理想映射,只需将右图虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么即为恒等映射。 实际中,当理想映射极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。右图是ResNet的基础架构–残差块(residual block)。 在残差块中,输入可通过跨层数据线路更快地向前传播。

ResNet沿用了VGG完整的卷积层设计。 残差块里首先有2个有相同输出通道数的卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1x1卷积层来将输入变换成需要的形状后再做相加运算。 残差块的实现如下:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Residual(nn.Module):  #@savedef __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

所示,此代码生成两种类型的网络: 一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。 另一种是当use_1x1conv=True时,添加通过卷积调整通道和分辨率。

下面来查看输入和输出形状一致的情况。

blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

也可以在增加输出通道数的同时,减半输出的高和宽。

blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape

2. ResNet模型

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7x7卷积层后,接步幅为2的的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

下面来实现这个模块。注意,对第一个模块做了特别处理

def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk

接着在ResNet加入所有残差块,这里每个模块使用2个残差块。

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。

net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的\(1\times 1\)卷积层)。 加上第一个7x7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。下图描述了完整的ResNet-18。

在训练ResNet之前,让观察一下ResNet中不同模块的输入形状是如何变化的。 在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:     torch.Size([1, 64, 56, 56])
Sequential output shape:     torch.Size([1, 64, 56, 56])
Sequential output shape:     torch.Size([1, 128, 28, 28])
Sequential output shape:     torch.Size([1, 256, 14, 14])
Sequential output shape:     torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:      torch.Size([1, 512, 1, 1])
Flatten output shape:        torch.Size([1, 512])
Linear output shape:         torch.Size([1, 10])

3. 训练模型

同之前一样,在Fashion-MNIST数据集上训练ResNet。

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

http://www.dtcms.com/a/354928.html

相关文章:

  • Ubuntu 使用百度云的bypy上传和下载数据
  • ArcGIS+Fragstats:土地利用统计分析、景观格局指数计算与地图制图
  • 终极实战 - 全链路排查一次“502 Bad Gateway”
  • Linux并发与竞争
  • 达梦数据库-重做日志文件(三)-自动化迁移脚本和检查 磁盘 I/O 性能建议
  • 详细介绍Linux 内存管理 匿名页面和page cache页面有什么区别?
  • Mybatis 与 Springboot 集成过程详解
  • vue有哪些优缺点
  • 前端实现Linux查询平台:打造高效运维工作流
  • 从图卷积网络(GCN)到简化图卷积网络(SGC)的对话
  • RAG系统深度优化全攻略:从理论到实践的高性能实现
  • 【C语言16天强化训练】从基础入门到进阶:Day 14
  • NVFP4量化技术深度解析:4位精度下实现2.3倍推理加速
  • 内网对抗-红日靶场4通关详解
  • 财务数据报销画像技术实现:从数据采集到智能决策的全流程解析
  • 2025docker快速部署Nginx UI可视化管理平台
  • Unity3d使用SerialPortUtilityPro读取串口数据
  • Linux(一) | 初识Linux与目录管理基础命令掌握
  • Libvio 访问异常排查指南
  • 2021/07 JLPT听力原文 问题一 2番
  • 【python】@staticmethod装饰器
  • nginx 配置文件初识全局块、events、http、server、location 的层级关系
  • SDK、JDK、JRE、JVM的区别
  • JSON 快速上手:语法解析与应用实例
  • 【VSCode】使用VSCode打开md文件以及转化为PDF
  • 打工人日报#20250828
  • HTTP 分块传输编码:深度解析与报文精髓
  • 第21节:环境贴图与PBR材质升级——构建电影级真实感渲染
  • Java 实现HTML转Word:从HTML文件与字符串到可编辑Word文档
  • 腕上智慧健康管家:华为WATCH 5与小艺的智美生活新范式