当前位置: 首页 > news >正文

大模型应用发展与Agent前沿技术趋势(下)

Agent技术的行业应用与实践案例

金融领域的Agent应用

金融行业是大模型Agent技术应用最为广泛的领域之一,涵盖了风险评估、投资决策、客户服务等多个方面。在金融风控领域,Agent系统通过结合大模型的语义理解能力和强化学习的决策优化能力,能够实现更精准的风险评估和欺诈检测。

以下是一个基于大模型的金融风控Agent实现,展示了如何结合多源数据进行风险评估:

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from typing import Dict, List, Tuple, Any, Optional
import timeclass FinancialDataProcessor:"""金融数据处理器"""def __init__(self):self.numeric_scaler = StandardScaler()self.categorical_encoders = {}self.fitted = Falsedef fit(self, data: pd.DataFrame):"""拟合数据处理器"""# 处理数值特征numeric_cols = ['transaction_amount', 'account_balance', 'transaction_frequency', 'avg_transaction']self.numeric_scaler.fit(data[numeric_cols])# 处理分类特征categorical_cols = ['transaction_type', 'merchant_category', 'device_type', 'location']for col in categorical_cols:unique_values = data[col].unique()self.categorical_encoders[col] = {val: i for i, val in enumerate(unique_values)}self.fitted = Truedef transform(self, data: pd.DataFrame) -> Dict[str, torch.Tensor]:"""转换数据为模型输入"""if not self.fitted:raise ValueError("Processor not fitted. Call fit() first.")# 处理数值特征numeric_cols = ['transaction_amount', 'account_balance', 'transaction_frequency', 'avg_transaction']numeric_data = self.numeric_scaler.transform(data[numeric_cols])# 处理分类特征categorical_cols = ['transaction_type', 'merchant_category', 'device_type', 'location']categorical_data = {}for col in categorical_cols:encoded = data[col].map(self.categorical_encoders[col]).fillna(-1).astype(int)categorical_data[col] = encoded.values# 处理时间特征time_data = self._process_time_features(data['transaction_time'])# 转换为张量numeric_tensor = torch.FloatTensor(numeric_data)categorical_tensors = {col: torch.LongTensor(vals) for col, vals in categorical_data.items()}time_tensor = torch.FloatTensor(time_data)return {'numeric': numeric_tensor,'categorical': categorical_tensors,'time': time_tensor}def _process_time_features(self, time_series) -> np.ndarray:"""处理时间特征"""# 提取小时、星期几等特征hours = time_series.dt.hourday_of_week = time_series.dt.dayofweekis_weekend = (day_of_week >= 5).astype(int)# 组合成特征矩阵features = np.vstack([hours,day_of_week,is_weekend]).Treturn featuresclass TransactionEncoder(nn.Module):"""交易编码器"""def __init__(self, numeric_dim: int,categorical_dims: Dict[str, int],time_dim: int,embedding_dim: int = 32,hidden_dim: int = 64):super(TransactionEncoder, self).__init__()# 数值特征处理self.numeric_processor = nn.Sequential(nn.Linear(numeric_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, embedding_dim))# 分类特征嵌入self.categorical_embeddings = nn.ModuleDict()for col, num_categories in categorical_dims.items():self.categorical_embeddings[col] = nn.Embedding(num_categories + 1, embedding_dim)# 时间特征处理self.time_processor = nn.Sequential(nn.Linear(time_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, embedding_dim))# 特征融合self.fusion = nn.Sequential(nn.Linear(embedding_dim * (2 + len(categorical_dims)), hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, embedding_dim))def forward(self, inputs: Dict[str, Any]) -> torch.Tensor:"""前向传播"""# 处理数值特征numeric_features = self.numeric_processor(inputs['numeric'])# 处理分类特征categorical_features = []for col, tensor in inputs['categorical'].items():embedding = self.categorical_embeddings[col](tensor)categorical_features.append(embedding)# 处理时间特征time_features = self.time_processor(inputs['time'])# 融合所有特征all_features = [numeric_features, time_features] + categorical_featurescombined = torch.cat(all_features, dim=-1)transaction_embedding = self.fusion(combined)return transaction_embeddingclass UserBehaviorModel(nn.Module):"""用户行为模型"""def __init__(self, transaction_dim: int,lstm_hidden_dim: int = 64,num_layers: int = 1):super(UserBehaviorModel, self).__init__()# LSTM用于建模用户行为序列self.lstm = nn.LSTM(input_size=transaction_dim,hidden_size=lstm_hidden_dim,num_layers=num_layers,batch_first=True,bidirectional=True)# 用户表示生成self.user_representation = nn.Sequential(nn.Linear(lstm_hidden_dim * 2, 64),nn.ReLU(),nn.Linear(64, 32))def forward(self, transaction_sequence: torch.Tensor) -> torch.Tensor:"""生成用户行为表示"""# LSTM处理序列lstm_out, _ = self.lstm(transaction_sequence)# 取最后一个时间步的输出last_output = lstm_out[:, -1, :]# 生成用户表示user_representation = self.user_representation(last_output)return user_representationclass RiskAssessmentAgent:"""风险评估Agent"""def __init__(self,transaction_encoder: nn.Module,user_behavior_model: nn.Module,risk_predictor: nn.Module,data_processor: FinancialDataProcessor):self.transaction_encoder = transaction_encoderself.user_behavior_model = user_behavior_modelself.risk_predictor = risk_predictorself.data_processor = data_processorself.user_transaction_history = {}self.risk_threshold = 0.7def update_user_history(self, user_id: str, transactions: pd.DataFrame):"""更新用户交易历史"""if user_id not in self.user_transaction_history:self.user_transaction_history[user_id] = []# 处理新交易for _, transaction in transactions.iterrows():processed = self.data_processor.transform(pd.DataFrame([transaction]))self.user_transaction_history[user_id].append(processed)# 限制历史长度if len(self.user_transaction_history[user_id]) > 100:self.user_transaction_history[user_id].pop(0)def assess_risk(self, user_id: str, new_transaction: pd.DataFrame) -> Dict[str, Any]:"""评估新交易的风险"""# 处理新交易new_transaction_data = self.data_processor.transform(new_transaction)# 获取用户历史交易序列if user_id in self.user_transaction_history and self.user_transaction_history[user_id]:history_sequence = torch.stack([self.transaction_encoder(hist_data) for hist_data in self.user_transaction_history[user_id]], dim=1)  # (batch_size, seq_len, feature_dim)else:# 新用户,使用默认历史history_sequence = torch.zeros(1, 10, self.transaction_encoder.embedding_dim)# 生成用户行为表示user_representation = self.user_behavior_model(history_sequence)# 编码新交易new_transaction_embedding = self.transaction_encoder(new_transaction_data)# 风险评估with torch.no_grad():risk_score = self.risk_predictor(torch.cat([user_representation, new_transaction_embedding], dim=-1)).item()# 生成解释explanation = self._generate_explanation(risk_score, new_transaction)# 决策is_suspicious = risk_score > self.risk_threshold# 记录评估结果assessment = {"risk_score": risk_score,"is_suspicious": is_suspicious,"explanation": explanation,"timestamp": time.time()}return assessmentdef _generate_explanation(self, risk_score: float, transaction: pd.DataFrame) -> str:"""生成风险评估解释"""if risk_score > 0.9:return "High risk: Unusual transaction amount and location compared to user history."elif risk_score > 0.7:return "Medium risk: Slightly unusual transaction pattern detected."elif risk_score > 0.5:return "Low risk: Minor deviation from normal behavior."else:return "Normal transaction: Consistent with user's historical behavior."class RiskPredictor(nn.Module):"""风险预测器"""def __init__(self, input_dim: int):super(RiskPredictor, self).__init__()self.network = nn.Sequential(nn.Linear(input_dim, 32),nn.ReLU(),nn.Linear(32, 16),nn.ReLU(),nn.Linear(16, 1),nn.Sigmoid())def forward(self, x: torch.Tensor) -> torch.Tensor:return self.network(x)# 示例使用金融风控Agent
if __name__ == "__main__":# 创建模拟数据处理器processor = FinancialDataProcessor()# 模拟训练数据(简化)train_data = pd.DataFrame({'transaction_amount': np.random.lognormal(mean=5, sigma=1, size=1000),'account_balance': np.random.lognormal(mean=8, sigma=1, size=1000),'transaction_frequency': np.random.poisson(lam=5, size=1000),'avg_transaction': np.random.lognormal(mean=4, sigma=0.5, size=1000),'transaction_type': np.random.choice(['purchase', 'transfer', 'withdrawal'], size=1000),'merchant_category': np.random.choice(['retail', 'food', 'travel', 'online'], size=1000),'device_type': np.random.choice(['mobile', 'desktop', 'tablet'], size=1000),'location': np.random.choice(['home_city', 'nearby_city', 'foreign_country'], size=1000),'transaction_time': pd.date_range(start='2023-01-01', periods=1000, freq='H'),'is_fraud': np.random.choice([0, 1], size=1000, p=[0.95, 0.05])})# 拟合数据处理器processor.fit(train_data)# 创建模型组件transaction_encoder = TransactionEncoder(numeric_dim=4,categorical_dims={'transaction_type': 3,'merchant_category': 4,'device_type': 3,'location': 3},time_dim=3)user_behavior_model = UserBehaviorModel(transaction_dim=transaction_encoder.embedding_dim)risk_predictor = RiskPredictor(input_dim=32 + transaction_encoder.embedding_dim  # user_repr + transaction)# 创建风险评估Agentagent = RiskAssessmentAgent(transaction_encoder,user_behavior_model,risk_predictor,processor)# 模拟用户交易历史user_id = "user_123"user_history = train_data[train_data.index < 50].copy()user_history['is_fraud'] = 0  # 正常历史agent.update_user_history(user_id, user_history)# 评估新交易print("Assessing normal transaction...")normal_transaction = pd.DataFrame([{'transaction_amount': 200,'account_balance': 5000,'transaction_frequency': 4,'avg_transaction': 150,'transaction_type': 'purchase','merchant_category': 'retail','device_type': 'mobile','location': 'home_city','transaction_time': pd.Timestamp.now()}])normal_assessment = agent.assess_risk(user_id, normal_transaction)print(f"Risk score: {normal_assessment['risk_score']:.4f}")print(f"Assessment: {'Suspicious' if normal_assessment['is_suspicious'] else 'Normal'}")print(f"Explanation: {normal_assessment['explanation']}\n")# 评估可疑交易print("Assessing suspicious transaction...")suspicious_transaction = pd.DataFrame([{'transaction_amount': 50000,'account_balance': 5000,'transaction_frequency': 4,'avg_transaction': 150,'transaction_type': 'transfer','merchant_category': 'online','device_type': 'desktop','location': 'foreign_country','transaction_time': pd.Timestamp.now()}])suspicious_assessment = agent.assess_risk(user_id, suspicious_transaction)print(f"Risk score: {suspicious_assessment['risk_score']:.4f}")print(f"Assessment: {'Suspicious' if suspicious_assessment['is_suspicious'] else 'Normal'}")print(f"Explanation: {suspicious_assessment['explanation']}")

在金融投资领域,Agent系统可以结合大模型的市场分析能力和强化学习的投资策略优化能力,实现智能投顾和量化交易。以下是一个基于大模型的投资决策Agent实现:

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
import yfinance as yf
from datetime import datetime, timedelta
import time
from typing import Dict, List, Tuple, Any, Optionalclass MarketDataProcessor:"""市场数据处理器"""def __init__(self):self.scalers = {}self.fitted = Falsedef fit(self, data: Dict[str, pd.DataFrame]):"""拟合数据处理器"""for symbol, df in data.items():# 为每个股票创建标准化器self.scalers[symbol] = {}# 数值特征numeric_cols = ['Open', 'High', 'Low', 'Close', 'Volume', 'MA5', 'MA20', 'RSI', 'MACD']self.scalers[symbol]['numeric'] = StandardScaler()self.scalers[symbol]['numeric'].fit(df[numeric_cols])self.fitted = Truedef transform(self, symbol: str, data: pd.DataFrame) -> torch.Tensor:"""转换市场数据为模型输入"""if not self.fitted:raise ValueError("Processor not fitted. Call fit() first.")# 数值特征numeric_cols = ['Open', 'High', 'Low', 'Close', 'Volume', 'MA5', 'MA20', 'RSI', 'MACD']numeric_data = self.scalers[symbol]['numeric'].transform(data[numeric_cols])# 转换为张量return torch.FloatTensor(numeric_data)class MarketTrendEncoder(nn.Module):"""市场趋势编码器"""def __init__(self, input_dim: int, hidden_dim: int = 64, num_layers: int = 2):super(MarketTrendEncoder, self).__init__()# LSTM用于编码市场趋势self.lstm = nn.LSTM(input_size=input_dim,hidden_size=hidden_dim,num_layers=num_layers,batch_first=True,bidirectional=True)# 趋势表示self.trend_representation = nn.Sequential(nn.Linear(hidden_dim * 2, 64),nn.ReLU(),nn.Linear(64, 32))def forward(self, x: torch.Tensor) -> torch.Tensor:"""编码市场趋势"""# LSTM处理lstm_out, _ = self.lstm(x)# 取最后一个时间步last_output = lstm_out[:, -1, :]# 生成趋势表示trend_repr = self.trend_representation(last_output)return trend_reprclass NewsSentimentAnalyzer:"""新闻情感分析器(模拟)"""def __init__(self):# 实际应用中应使用预训练的情感分析模型passdef analyze(self, news_articles: List[Dict[str, str]]) -> float:"""分析新闻情感"""# 简化实现:随机生成情感分数if not news_articles:return 0.0# 模拟情感分析return np.random.uniform(-1.0, 1.0)class InvestmentDecisionAgent:"""投资决策Agent"""def __init__(self,trend_encoder: nn.Module,data_processor: MarketDataProcessor,news_analyzer: NewsSentimentAnalyzer,portfolio_manager: 'PortfolioManager',risk_tolerance: float = 0.5):self.trend_encoder = trend_encoderself.data_processor = data_processorself.news_analyzer = news_analyzerself.portfolio_manager = portfolio_managerself.risk_tolerance = risk_toleranceself.action_space = ['buy', 'sell', 'hold']self.decision_history = []def make_decision(self, symbol: str,market_data: pd.DataFrame,news_articles: List[Dict[str, str]]) -> Dict[str, Any]:"""做出投资决策"""# 处理市场数据processed_data = self.data_processor.transform(symbol, market_data)# 编码市场趋势with torch.no_grad():trend_repr = self.trend_encoder(processed_data.unsqueeze(0))# 分析新闻情感sentiment_score = self.news_analyzer.analyze(news_articles)# 获取当前持仓current_position = self.portfolio_manager.get_position(symbol)# 决策逻辑decision, confidence = self._generate_decision(trend_repr, sentiment_score, current_position)# 生成解释explanation = self._generate_explanation(symbol, decision, confidence, sentiment_score)# 记录决策decision_record = {"symbol": symbol,"decision": decision,"confidence": confidence,"sentiment": sentiment_score,"timestamp": time.time(),"explanation": explanation}self.decision_history.append(decision_record)return decision_recorddef _generate_decision(self, trend_repr: torch.Tensor,sentiment_score: float,current_position: float) -> Tuple[str, float]:"""生成投资决策"""# 简化决策逻辑trend_score = trend_repr[0, 0].item()  # 使用第一个维度作为趋势指标# 综合趋势和新闻combined_score = 0.7 * trend_score + 0.3 * sentiment_score# 根据风险偏好调整if self.risk_tolerance < 0.3:# 保守型:降低买卖意愿combined_score *= 0.7elif self.risk_tolerance > 0.7:# 激进型:增强买卖意愿combined_score *= 1.3# 决策阈值buy_threshold = 0.3sell_threshold = -0.2# 生成决策if combined_score > buy_threshold and current_position == 0:return 'buy', min(0.5 + combined_score, 1.0)elif combined_score < sell_threshold and current_position > 0:return 'sell', min(0.5 - combined_score, 1.0)else:return 'hold', 1.0 - abs(combined_score)def _generate_explanation(self, symbol: str,decision: str,confidence: float,sentiment_score: float) -> str:"""生成决策解释"""if decision == 'buy':return f"Recommend buying {symbol}. Market trend and news sentiment indicate potential upside (confidence: {confidence:.2f})."elif decision == 'sell':return f"Recommend selling {symbol}. Market trend and news sentiment suggest potential downside (confidence: {confidence:.2f})."else:return f"Recommend holding {symbol}. Market signals are inconclusive (confidence: {confidence:.2f})."class PortfolioManager:"""投资组合管理器"""def __init__(self, initial_cash: float = 100000.0):self.cash = initial_cashself.positions = {}  # symbol: quantityself.trade_history = []self.initial_value = initial_cashdef get_position(self, symbol: str) -> float:"""获取持仓"""return self.positions.get(symbol, 0.0)def execute_trade(self, symbol: str, decision: str, price: float, quantity: Optional[int] = None):"""执行交易"""current_position = self.get_position(symbol)if decision == 'buy':# 计算可购买数量(使用50%现金)if quantity is None:quantity = int((self.cash * 0.5) // price)# 检查是否有足够现金cost = quantity * priceif cost > self.cash:quantity = self.cash // pricecost = quantity * priceif quantity > 0:# 更新持仓self.positions[symbol] = self.positions.get(symbol, 0) + quantityself.cash -= cost# 记录交易self._record_trade(symbol, 'buy', quantity, price)elif decision == 'sell' and current_position > 0:# 计算可卖出数量(全部持仓)if quantity is None:quantity = current_position# 更新持仓self.positions[symbol] = max(0, self.positions.get(symbol, 0) - quantity)self.cash += quantity * price# 记录交易self._record_trade(symbol, 'sell', quantity, price)def _record_trade(self, symbol: str, action: str, quantity: int, price: float):"""记录交易"""self.trade_history.append({"symbol": symbol,"action": action,"quantity": quantity,"price": price,"timestamp": time.time(),"value": quantity * price})def get_portfolio_value(self, current_prices: Dict[str, float]) -> float:"""获取投资组合当前价值"""value = self.cashfor symbol, quantity in self.positions.items():if symbol in current_prices:value += quantity * current_prices[symbol]return valuedef get_performance(self, current_prices: Dict[str, float]) -> float:"""获取投资组合表现"""current_value = self.get_portfolio_value(current_prices)return (current_value - self.initial_value) / self.initial_value# 示例使用投资决策Agent
if __name__ == "__main__":# 模拟获取市场数据def fetch_market_data(symbol: str, days: int = 30) -> pd.DataFrame:"""获取市场数据(模拟)"""end_date = datetime.now()start_date = end_date - timedelta(days=days)# 实际应用中应使用真实数据源dates = pd.date_range(start=start_date, end=end_date, freq='D')prices = np.cumprod(1 + np.random.normal(0, 0.02, len(dates)))volumes = np.random.lognormal(mean=10, sigma=1, size=len(dates))df = pd.DataFrame({'Date': dates,'Open': prices * 0.99,'High': prices * 1.02,'Low': prices * 0.98,'Close': prices,'Volume': volumes})# 添加技术指标df['MA5'] = df['Close'].rolling(window=5).mean()df['MA20'] = df['Close'].rolling(window=20).mean()df['RSI'] = 50 + np.random.randn(len(df)) * 10  # 简化RSIdf['MACD'] = np.random.randn(len(df))  # 简化MACDreturn df# 模拟获取新闻def fetch_news(symbol: str, days: int = 7) -> List[Dict[str, str]]:"""获取相关新闻(模拟)"""return [{"title": f"News about {symbol}", "content": "Positive news content..."},{"title": f"Another article on {symbol}", "content": "Neutral news content..."}]# 创建组件trend_encoder = MarketTrendEncoder(input_dim=9)  # 9个特征data_processor = MarketDataProcessor()news_analyzer = NewsSentimentAnalyzer()portfolio_manager = PortfolioManager(initial_cash=100000.0)# 准备训练数据(简化)symbols = ['AAPL', 'MSFT', 'GOOG']train_data = {}for symbol in symbols:train_data[symbol] = fetch_market_data(symbol, days=90)data_processor.fit(train_data)# 创建投资决策Agentagent = InvestmentDecisionAgent(trend_encoder=trend_encoder,data_processor=data_processor,news_analyzer=news_analyzer,portfolio_manager=portfolio_manager,risk_tolerance=0.6)# 模拟交易日print("=== Investment Decision Simulation ===")for day in range(5):print(f"\nDay {day+1}:")for symbol in symbols:# 获取最新市场数据market_data = fetch_market_data(symbol, days=30)# 获取相关新闻news = fetch_news(symbol)# 做出决策decision = agent.make_decision(symbol, market_data, news)print(f"{symbol} decision: {decision['decision'].upper()} (confidence: {decision['confidence']:.2f})")print(f"  Explanation: {decision['explanation']}")# 执行交易(简化)if decision['decision'] != 'hold':# 模拟当前价格current_price = market_data['Close'].iloc[-1]# 执行交易portfolio_manager.execute_trade(symbol=symbol,decision=decision['decision'],price=current_price)# 评估投资组合current_prices = {symbol: fetch_market_data(symbol)['Close'].iloc[-1] for symbol in symbols}portfolio_value = portfolio_manager.get_portfolio_value(current_prices)performance = portfolio_manager.get_performance(current_prices)print(f"\nPortfolio value: ${portfolio_value:,.2f}")print(f"Performance: {performance:.2%}")# 暂停模拟time.sleep(1)# 显示交易历史print("\nTrade History:")for i, trade in enumerate(portfolio_manager.trade_history):print(f"{i+1}. {trade['action'].upper()} {trade['quantity']} {trade['symbol']} @ ${trade['price']:.2f}")# 高级投资Agent:结合强化学习的优化
class RLInvestmentAgent(InvestmentDecisionAgent):"""基于强化学习的投资Agent"""def __init__(self,trend_encoder: nn.Module,data_processor: MarketDataProcessor,news_analyzer: NewsSentimentAnalyzer,portfolio_manager: PortfolioManager,risk_tolerance: float = 0.5,lr: float = 0.001,gamma: float = 0.99):super().__init__(trend_encoder, data_processor, news_analyzer, portfolio_manager,risk_tolerance)# DQN组件self.state_dim = 32 + 1  # trend_repr + sentimentself.action_dim = len(self.action_space)self.policy_net = nn.Sequential(nn.Linear(self.state_dim, 64),nn.ReLU(),nn.Linear(64, 64),nn.ReLU(),nn.Linear(64, self.action_dim))self.target_net = nn.Sequential(nn.Linear(self.state_dim, 64),nn.ReLU(),nn.Linear(64, 64),nn.ReLU(),nn.Linear(64, self.action_dim))self.target_net.load_state_dict(self.policy_net.state_dict())self.target_net.eval()self.optimizer = torch.optim.Adam(self.policy_net.parameters(), lr=lr)self.gamma = gammaself.memory = []self.batch_size = 32self.epsilon = 1.0self.epsilon_min = 0.1self.epsilon_decay = 0.995def get_state(self, trend_repr: torch.Tensor, sentiment_score: float) -> torch.Tensor:"""获取状态表示"""# 合并趋势表示和情感分数state = torch.cat([trend_repr.squeeze(0),torch.tensor([sentiment_score])])return statedef select_action(self, state: torch.Tensor) -> str:"""选择动作"""if np.random.rand() < self.epsilon:# 探索:随机选择return np.random.choice(self.action_space)else:# 利用:选择Q值最高的动作with torch.no_grad():q_values = self.policy_net(state)action_idx = q_values.argmax().item()return self.action_space[action_idx]def store_experience(self, state: torch.Tensor, action: str, reward: float, next_state: torch.Tensor, done: bool):"""存储经验"""action_idx = self.action_space.index(action)self.memory.append((state, action_idx, reward, next_state, done))# 限制记忆大小if len(self.memory) > 10000:self.memory.pop(0)def train(self):"""训练DQN"""if len(self.memory) < self.batch_size:return# 采样批次batch = random.sample(self.memory, self.batch_size)states, actions, rewards, next_states, dones = zip(*batch)# 转换为张量states = torch.stack(states)actions = torch.LongTensor(actions)rewards = torch.FloatTensor(rewards)next_states = torch.stack(next_states)dones = torch.FloatTensor(dones)# 计算当前Q值current_q = self.policy_net(states).gather(1, actions.unsqueeze(1))# 计算目标Q值with torch.no_grad():next_q = self.target_net(next_states).max(1)[0]target_q = rewards + self.gamma * next_q * (1 - dones)# 计算损失loss = nn.MSELoss()(current_q.squeeze(), target_q)# 优化模型self.optimizer.zero_grad()loss.backward()self.optimizer.step()# 更新epsilonself.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)def make_decision(self, symbol: str,market_data: pd.DataFrame,news_articles: List[Dict[str, str]]) -> Dict[str, Any]:"""强化学习增强的决策"""# 处理市场数据processed_data = self.data_processor.transform(symbol, market_data)# 编码市场趋势with torch.no_grad():trend_repr = self.trend_encoder(processed_data.unsqueeze(0))# 分析新闻情感sentiment_score = self.news_analyzer.analyze(news_articles)# 获取当前持仓current_position = self.portfolio_manager.get_position(symbol)# 获取状态state = self.get_state(trend_repr, sentiment_score)# 选择动作action = self.select_action(state)# 生成解释explanation = self._generate_rl_explanation(symbol, action, sentiment_score)# 记录决策(用于训练)decision_record = {"symbol": symbol,"decision": action,"state": state,"timestamp": time.time(),"explanation": explanation,"current_position": current_position}self.decision_history.append(decision_record)return decision_recorddef _generate_rl_explanation(self, symbol: str,decision: str,sentiment_score: float) -> str:"""生成强化学习决策解释"""base_explanation = super()._generate_explanation(symbol, decision, 0.0, sentiment_score)# 添加强化学习特定信息if self.epsilon > 0.5:return f"[Exploration] {base_explanation}"else:return f"[Exploitation] {base_explanation}"def update_policy(self, symbol: str,reward: float,done: bool = False):"""更新策略"""if len(self.decision_history) < 2:return# 获取最近两次决策current_decision = self.decision_history[-1]previous_decision = self.decision_history[-2]# 存储经验self.store_experience(previous_decision["state"],previous_decision["decision"],reward,current_decision["state"],done)# 训练self.train()

医疗健康领域的Agent应用

在医疗健康领域,大模型Agent可以辅助医生进行诊断、制定治疗方案、管理患者健康等任务。以下是一个医疗诊断Agent的实现,展示了如何结合医学知识库和患者数据进行智能诊断:

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from typing import Dict, List, Tuple, Any, Optional
import re
import json
import timeclass MedicalKnowledgeBase:"""医学知识库"""def __init__(self, conditions_data: List[Dict]):"""初始化医学知识库Args:conditions_data: 疾病数据列表,每个元素包含疾病名称、症状、治疗方法等信息"""self.conditions = conditions_dataself.symptom_index = self._build_symptom_index()self.vectorizer = TfidfVectorizer()self.condition_vectors = self._vectorize_conditions()def _build_symptom_index(self) -> Dict[str, List[int]]:"""构建症状索引"""symptom_index = {}for idx, condition in enumerate(self.conditions):for symptom in condition['symptoms']:# 标准化症状名称normalized = self._normalize_symptom(symptom)if normalized not in symptom_index:symptom_index[normalized] = []symptom_index[normalized].append(idx)return symptom_indexdef _normalize_symptom(self, symptom: str) -> str:"""标准化症状名称"""# 转换为小写symptom = symptom.lower()# 移除标点symptom = re.sub(r'[^\w\s]', '', symptom)# 移除多余空格symptom = re.sub(r'\s+', ' ', symptom).strip()return symptomdef _vectorize_conditions(self) -> np.ndarray:"""向量化疾病描述"""descriptions = [f"{cond['name']} {cond['description']} {' '.join(cond['symptoms'])}"for cond in self.conditions]return self.vectorizer.fit_transform(descriptions).toarray()def search_by_symptoms(self, symptoms: List[str], top_k: int = 5) -> List[Dict]:"""根据症状搜索可能的疾病"""# 标准化输入症状normalized_symptoms = [self._normalize_symptom(s) for s in symptoms]# 收集匹配的疾病IDcondition_ids = set()for symptom in normalized_symptoms:if symptom in self.symptom_index:condition_ids.update(self.symptom_index[symptom])# 如果没有匹配,使用向量相似度搜索if not condition_ids:return self._semantic_search(symptoms, top_k)# 获取匹配的疾病matches = [{"condition": self.conditions[idx],"match_count": self._count_matching_symptoms(idx, normalized_symptoms)}for idx in condition_ids]# 按匹配症状数量排序matches.sort(key=lambda x: x["match_count"], reverse=True)# 返回top_k结果return [{"name": m["condition"]["name"],"probability": min(m["match_count"] / len(m["condition"]["symptoms"]), 1.0),"symptoms": m["condition"]["symptoms"],"treatment": m["condition"]["treatment"]}for m in matches[:top_k]]def _count_matching_symptoms(self, condition_idx: int, symptoms: List[str]) -> int:"""计算匹配的症状数量"""condition = self.conditions[condition_idx]normalized_condition_symptoms = [self._normalize_symptom(s) for s in condition["symptoms"]]return sum(1 for s in symptoms if s in normalized_condition_symptoms)def _semantic_search(self, symptoms: List[str], top_k: int) -> List[Dict]:"""语义搜索"""query = " ".join(symptoms)query_vec = self.vectorizer.transform([query]).toarray()# 计算余弦相似度similarities = cosine_similarity(query_vec, self.condition_vectors)[0]# 获取top_k结果top_indices = np.argsort(similarities)[::-1][:top_k]return [{"name": self.conditions[idx]["name"],"probability": float(similarities[idx]),"symptoms": self.conditions[idx]["symptoms"],"treatment": self.conditions[idx]["treatment"]}for idx in top_indices]class PatientProfile:"""患者档案"""def __init__(self, patient_id: str,age: int,gender: str,medical_history: List[str],current_symptoms: List[str],medications: List[str]):self.patient_id = patient_idself.age = ageself.gender = genderself.medical_history = medical_historyself.current_symptoms = current_symptomsself.medications = medicationsself.diagnosis_history = []self.treatment_plan = Nonedef update_symptoms(self, new_symptoms: List[str]):"""更新症状"""self.current_symptoms = list(set(self.current_symptoms + new_symptoms))def add_diagnosis(self, diagnosis: Dict):"""添加诊断记录"""diagnosis["timestamp"] = time.time()self.diagnosis_history.append(diagnosis)def to_dict(self) -> Dict[str, Any]:"""转换为字典"""return {"patient_id": self.patient_id,"age": self.age,"gender": self.gender,"medical_history": self.medical_history,"current_symptoms": self.current_symptoms,"medications": self.medications,"diagnosis_history": self.diagnosis_history,"treatment_plan": self.treatment_plan}class DiagnosisAgent:"""诊断Agent"""def __init__(self, knowledge_base: MedicalKnowledgeBase):self.knowledge_base = knowledge_baseself.diagnosis_rules = self._load_diagnosis_rules()self.confidence_threshold = 0.3def _load_diagnosis_rules(self) -> List[Dict]:"""加载诊断规则"""# 实际应用中应从知识库加载return [{"name": "Fever with cough","symptoms": ["fever", "cough"],"min_symptoms": 2,"conditions": ["Common Cold", "Influenza", "Pneumonia"]},{"name": "Chest pain","symptoms": ["chest pain", "shortness of breath"],"min_symptoms": 1,"conditions": ["Heart Attack", "Angina", "Pneumonia"]}]def diagnose(self, patient: PatientProfile) -> Dict[str, Any]:"""诊断患者"""# 获取可能的疾病possible_conditions = self.knowledge_base.search_by_symptoms(patient.current_symptoms, top_k=10)# 应用诊断规则rule_matches = self._apply_diagnosis_rules(patient.current_symptoms)# 合并结果final_diagnosis = self._combine_results(possible_conditions, rule_matches,patient)# 排序并筛选final_diagnosis = [d for d in final_diagnosis if d["probability"] >= self.confidence_threshold]final_diagnosis.sort(key=lambda x: x["probability"], reverse=True)# 生成诊断报告report = {"patient_id": patient.patient_id,"diagnosis": final_diagnosis[:3],  # 只返回top 3"symptoms": patient.current_symptoms,"timestamp": time.time(),"confidence_threshold": self.confidence_threshold}# 更新患者档案patient.add_diagnosis(report)return reportdef _apply_diagnosis_rules(self, symptoms: List[str]) -> List[Dict]:"""应用诊断规则"""matches = []for rule in self.diagnosis_rules:# 检查匹配的症状数量matched_symptoms = [s for s in symptoms if any(rule_symptom in s or s in rule_symptom for rule_symptom in rule["symptoms"])]if len(matched_symptoms) >= rule["min_symptoms"]:matches.append({"rule": rule["name"],"matched_symptoms": matched_symptoms,"possible_conditions": rule["conditions"]})return matchesdef _combine_results(self, possible_conditions: List[Dict],rule_matches: List[Dict],patient: PatientProfile) -> List[Dict]:"""合并诊断结果"""# 创建条件到概率的映射condition_probs = {}# 添加知识库搜索结果for cond in possible_conditions:condition_probs[cond["name"]] = cond["probability"]# 添加规则匹配结果for match in rule_matches:for cond in match["possible_conditions"]:if cond in condition_probs:condition_probs[cond] += 0.2  # 规则匹配增加概率else:condition_probs[cond] = 0.3# 考虑患者历史(简化)for cond, prob in condition_probs.items():if any(cond.lower() in history.lower() for history in patient.medical_history):condition_probs[cond] = min(prob * 1.5, 1.0)# 归一化概率max_prob = max(condition_probs.values()) if condition_probs else 1.0for cond in condition_probs:condition_probs[cond] /= max_prob# 转换为列表results = [{"name": cond,"probability": prob,"treatment": self._get_treatment(cond)}for cond, prob in condition_probs.items()]return resultsdef _get_treatment(self, condition_name: str) -> str:"""获取治疗方法"""for cond in self.knowledge_base.conditions:if cond["name"].lower() == condition_name.lower():return cond["treatment"]return "Consult a healthcare professional for appropriate treatment."class TreatmentPlanner:"""治疗规划器"""def __init__(self, knowledge_base: MedicalKnowledgeBase):self.knowledge_base = knowledge_basedef create_treatment_plan(self, patient: PatientProfile, diagnosis: List[Dict]) -> Dict[str, Any]:"""创建治疗计划"""if not diagnosis:return {"error": "No diagnosis provided"}# 选择最可能的诊断primary_diagnosis = diagnosis[0]# 获取疾病信息condition_info = self._get_condition_info(primary_diagnosis["name"])if not condition_info:return {"error": "Condition not found in knowledge base"}# 创建治疗计划treatment_plan = {"diagnosis": primary_diagnosis["name"],"confidence": primary_diagnosis["probability"],"recommended_treatments": self._select_treatments(condition_info, patient),"lifestyle_recommendations": self._generate_lifestyle_recommendations(condition_info),"follow_up": self._determine_follow_up(condition_info),"warnings": self._check_for_warnings(condition_info, patient),"timestamp": time.time()}# 更新患者档案patient.treatment_plan = treatment_planreturn treatment_plandef _get_condition_info(self, condition_name: str) -> Optional[Dict]:"""获取疾病信息"""for cond in self.knowledge_base.conditions:if cond["name"].lower() == condition_name.lower():return condreturn Nonedef _select_treatments(self, condition_info: Dict, patient: PatientProfile) -> List[Dict]:"""选择治疗方法"""# 基本治疗方法treatments = [{"name": treatment["name"],"description": treatment["description"],"dosage": treatment.get("dosage", ""),"duration": treatment.get("duration", ""),"priority": treatment.get("priority", 1)} for treatment in condition_info["treatments"]]# 考虑患者因素调整治疗for treatment in treatments:# 检查药物冲突if "medications" in treatment and treatment["medications"]:for med in treatment["medications"]:if med in patient.medications:treatment["warnings"] = "Potential drug interaction detected"# 调整剂量基于年龄if patient.age > 65 and "elderly_adjustment" in treatment:treatment["dosage"] = treatment["elderly_adjustment"]# 按优先级排序treatments.sort(key=lambda x: x["priority"])return treatmentsdef _generate_lifestyle_recommendations(self, condition_info: Dict) -> List[str]:"""生成生活方式建议"""return condition_info.get("lifestyle_recommendations", [])def _determine_follow_up(self, condition_info: Dict) -> str:"""确定随访计划"""severity = condition_info.get("severity", "moderate")if severity == "critical":return "Immediate follow-up required within 24 hours"elif severity == "severe":return "Follow-up within 3 days"else:return "Follow-up in 1-2 weeks"def _check_for_warnings(self, condition_info: Dict, patient: PatientProfile) -> List[str]:"""检查警告"""warnings = []# 检查既往病史冲突for history in patient.medical_history:if any(conflict in history.lower() for conflict in condition_info.get("contraindications", [])):warnings.append(f"Contraindicated due to history of {history}")# 检查药物冲突for med in patient.medications:if any(conflict in med.lower() for conflict in condition_info.get("drug_conflicts", [])):warnings.append(f"Potential conflict with medication: {med}")return warnings# 示例使用医疗诊断Agent
if __name__ == "__main__":# 创建模拟医学知识库medical_conditions = [{"name": "Common Cold","description": "Viral infection of the upper respiratory tract","symptoms": ["runny nose", "sneezing", "sore throat", "mild fever", "cough"],"treatments": [{"name": "Rest","description": "Get plenty of rest to help your body fight the infection","priority": 1},{"name": "Hydration","description": "Drink plenty of fluids to stay hydrated","priority": 1},{"name": "OTC Pain Relievers","description": "Such as acetaminophen or ibuprofen for symptom relief","dosage": "As directed on package","priority": 2}],"lifestyle_recommendations": ["Use saline nasal drops","Gargle with warm salt water for sore throat","Use a humidifier"],"severity": "mild","contraindications": [],"drug_conflicts": []},{"name": "Influenza","description": "Contagious respiratory illness caused by influenza viruses","symptoms": ["fever", "chills", "muscle aches", "fatigue", "cough", "sore throat"],"treatments": [{"name": "Antiviral Medication","description": "Such as oseltamivir (Tamiflu) if started early","dosage": "75mg twice daily for 5 days","priority": 1},{"name": "Rest","description": "Get plenty of rest to help your body recover","priority": 1},{"name": "Hydration","description": "Drink plenty of fluids to stay hydrated","priority": 1}],"lifestyle_recommendations": ["Stay home to avoid spreading the virus","Cover your mouth when coughing or sneezing","Wash hands frequently"],"severity": "moderate","contraindications": [],"drug_conflicts": ["warfarin"]},{"name": "Pneumonia","description": "Infection that inflames air sacs in one or both lungs","symptoms": ["fever", "chills", "cough with phlegm", "shortness of breath", "chest pain"],"treatments": [{"name": "Antibiotics","description": "For bacterial pneumonia","dosage": "As prescribed by physician","priority": 1},{"name": "Oxygen Therapy","description": "If oxygen levels are low","priority": 1},{"name": "Rest","description": "Get plenty of rest to help recovery","priority": 2}],"lifestyle_recommendations": ["Use a humidifier to loosen mucus","Stay hydrated","Avoid smoke and air pollutants"],"severity": "severe","contraindications": ["asthma", "COPD"],"drug_conflicts": []}]# 创建知识库和Agentknowledge_base = MedicalKnowledgeBase(medical_conditions)diagnosis_agent = DiagnosisAgent(knowledge_base)treatment_planner = TreatmentPlanner(knowledge_base)# 创建模拟患者patient = PatientProfile(patient_id="P12345",age=35,gender="female",medical_history=["seasonal allergies"],current_symptoms=["fever", "cough", "sore throat"],medications=["antihistamines"])# 诊断患者print("=== Medical Diagnosis ===")diagnosis = diagnosis_agent.diagnose(patient)# 显示诊断结果print(f"Patient: {patient.patient_id}, Age: {patient.age}, Gender: {patient.gender}")print(f"Symptoms: {', '.join(patient.current_symptoms)}")print("\nDiagnosis Results:")for i, cond in enumerate(diagnosis["diagnosis"]):print(f"{i+1}. {cond['name']} (Probability: {cond['probability']:.2%})")print(f"   Treatment: {cond['treatment']}")# 创建治疗计划print("\n=== Treatment Plan ===")treatment_plan = treatment_planner.create_treatment_plan(patient, diagnosis["diagnosis"])# 显示治疗计划print(f"Primary Diagnosis: {treatment_plan['diagnosis']} (Confidence: {treatment_plan['confidence']:.2%})")print("\nRecommended Treatments:")for i, treatment in enumerate(treatment_plan["recommended_treatments"]):print(f"{i+1}. {treatment['name']}")print(f"   {treatment['description']}")if treatment.get('dosage'):print(f"   Dosage: {treatment['dosage']}")if treatment.get('warnings'):print(f"   WARNING: {treatment['warnings']}")print("\nLifestyle Recommendations:")for i, rec in enumerate(treatment_plan["lifestyle_recommendations"]):print(f"{i+1}. {rec}")print(f"\nFollow-up: {treatment_plan['follow_up']}")if treatment_plan["warnings"]:print("\nWarnings:")for warning in treatment_plan["warnings"]:print(f"- {warning}")# 高级医疗Agent:结合患者监测数据
class PatientMonitoringAgent:"""患者监测Agent"""def __init__(self, diagnosis_agent: DiagnosisAgent,treatment_planner: TreatmentPlanner,alert_threshold: float = 0.7):self.diagnosis_agent = diagnosis_agentself.treatment_planner = treatment_plannerself.alert_threshold = alert_thresholdself.patient_monitoring = {}def register_patient(self, patient: PatientProfile, monitoring_frequency: str = "daily"):"""注册患者进行监测"""self.patient_monitoring[patient.patient_id] = {"patient": patient,"frequency": monitoring_frequency,"last_assessment": None,"alert_history": []}def monitor_patient(self, patient_id: str, new_symptoms: List[str], vitals: Dict[str, float]):"""监测患者状态"""if patient_id not in self.patient_monitoring:raise ValueError(f"Patient {patient_id} not registered for monitoring")monitoring_data = self.patient_monitoring[patient_id]patient = monitoring_data["patient"]# 更新症状patient.update_symptoms(new_symptoms)# 诊断评估diagnosis = self.diagnosis_agent.diagnose(patient)# 检查是否需要警报needs_alert = self._check_for_alerts(diagnosis, vitals)# 生成监测报告report = {"patient_id": patient_id,"timestamp": time.time(),"symptoms": patient.current_symptoms,"vitals": vitals,"diagnosis": diagnosis["diagnosis"],"needs_alert": needs_alert,"alert_reasons": []}# 如果需要警报,记录原因if needs_alert:report["alert_reasons"] = self._get_alert_reasons(diagnosis, vitals)monitoring_data["alert_history"].append(report)# 更新最后评估monitoring_data["last_assessment"] = reportreturn reportdef _check_for_alerts(self, diagnosis: Dict, vitals: Dict[str, float]) -> bool:"""检查是否需要警报"""# 检查高概率诊断if diagnosis["diagnosis"] and diagnosis["diagnosis"][0]["probability"] > self.alert_threshold:return True# 检查关键生命体征if vitals.get("temperature", 0) > 39.0:  # 高烧return Trueif 0 < vitals.get("heart_rate", 0) < 50 or vitals.get("heart_rate", 0) > 120:  # 心率异常return Trueif vitals.get("oxygen_saturation", 0) < 90:  # 低血氧return Truereturn Falsedef _get_alert_reasons(self, diagnosis: Dict, vitals: Dict[str, float]) -> List[str]:"""获取警报原因"""reasons = []# 诊断相关原因if diagnosis["diagnosis"] and diagnosis["diagnosis"][0]["probability"] > self.alert_threshold:reasons.append(f"High probability diagnosis: {diagnosis['diagnosis'][0]['name']}")# 生命体征相关原因if vitals.get("temperature", 0) > 39.0:reasons.append(f"High fever: {vitals['temperature']}°C")if 0 < vitals.get("heart_rate", 0) < 50:reasons.append(f"Low heart rate: {vitals['heart_rate']} bpm")elif vitals.get("heart_rate", 0) > 120:reasons.append(f"High heart rate: {vitals['heart_rate']} bpm")if vitals.get("oxygen_saturation", 0) < 90:reasons.append(f"Low oxygen saturation: {vitals['oxygen_saturation']}%")return reasons# 示例使用患者监测Agent
if __name__ == "__main__":print("\n\n=== Patient Monitoring Example ===")# 创建监测Agentmonitoring_agent = PatientMonitoringAgent(diagnosis_agent, treatment_planner)# 注册患者monitoring_agent.register_patient(patient, "daily")# 模拟监测print("\nFirst monitoring (stable condition):")report1 = monitoring_agent.monitor_patient(patient.patient_id,new_symptoms=["mild headache"],vitals={"temperature": 37.5,"heart_rate": 85,"oxygen_saturation": 98})print(f"Needs alert: {report1['needs_alert']}")if report1["alert_reasons"]:print("Alert reasons:", report1["alert_reasons"])# 模拟病情恶化print("\nSecond monitoring (worsening condition):")report2 = monitoring_agent.monitor_patient(patient.patient_id,new_symptoms=["difficulty breathing", "chest pain"],vitals={"temperature": 39.2,"heart_rate": 125,"oxygen_saturation": 87})print(f"Needs alert: {report2['needs_alert']}")if report2["alert_reasons"]:print("Alert reasons:", report2["alert_reasons"])

智能制造领域的Agent应用

在智能制造领域,大模型Agent可以优化生产流程、预测设备故障、管理供应链等。以下是一个生产优化Agent的实现,展示了如何结合生产数据和大模型进行智能决策:

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from typing import Dict, List, Tuple, Any, Optional
import time
import randomclass ProductionDataProcessor:"""生产数据处理器"""def __init__(self):self.scalers = {}self.fitted = Falsedef fit(self, data: Dict[str, pd.DataFrame]):"""拟合数据处理器"""for machine_id, df in data.items():# 为每台机器创建标准化器self.scalers[machine_id] = {}# 数值特征numeric_cols = ['temperature', 'vibration', 'pressure', 'speed', 'power_consumption', 'output_rate']self.scalers[machine_id]['numeric'] = StandardScaler()self.scalers[machine_id]['numeric'].fit(df[numeric_cols])self.fitted = Truedef transform(self, machine_id: str, data: pd.DataFrame) -> torch.Tensor:"""转换生产数据为模型输入"""if not self.fitted:raise ValueError("Processor not fitted. Call fit() first.")# 数值特征numeric_cols = ['temperature', 'vibration', 'pressure', 'speed', 'power_consumption', 'output_rate']numeric_data = self.scalers[machine_id]['numeric'].transform(data[numeric_cols])# 转换为张量return torch.FloatTensor(numeric_data)class MachineStateEncoder(nn.Module):"""机器状态编码器"""def __init__(self, input_dim: int, hidden_dim: int = 64, num_layers: int = 2):super(MachineStateEncoder, self).__init__()# LSTM用于编码机器状态序列self.lstm = nn.LSTM(input_size=input_dim,hidden_size=hidden_dim,num_layers=num_layers,batch_first=True,bidirectional=True)# 状态表示self.state_representation = nn.Sequential(nn.Linear(hidden_dim * 2, 64),nn.ReLU(),nn.Linear(64, 32))def forward(self, x: torch.Tensor) -> torch.Tensor:"""编码机器状态"""# LSTM处理lstm_out, _ = self.lstm(x)# 取最后一个时间步last_output = lstm_out[:, -1, :]# 生成状态表示state_repr = self.state_representation(last_output)return state_reprclass ProductionOptimizer:"""生产优化器"""def __init__(self, state_encoder: nn.Module,data_processor: ProductionDataProcessor,target_output: float,max_power: float):self.state_encoder = state_encoderself.data_processor = data_processorself.target_output = target_outputself.max_power = max_powerself.machine_states = {}self.optimization_history = []def update_machine_state(self, machine_id: str, sensor_data: pd.DataFrame):"""更新机器状态"""# 处理传感器数据processed_data = self.data_processor.transform(machine_id, sensor_data)# 编码状态with torch.no_grad():state_repr = self.state_encoder(processed_data.unsqueeze(0))# 存储状态self.machine_states[machine_id] = {"state_repr": state_repr,"last_data": sensor_data.iloc[-1].to_dict(),"timestamp": time.time()}def optimize_production(self, machine_id: str) -> Dict[str, Any]:"""优化生产参数"""if machine_id not in self.machine_states:raise ValueError(f"Machine {machine_id} state not available")machine_state = self.machine_states[machine_id]current_data = machine_state["last_data"]# 优化逻辑optimization = self._calculate_optimization(current_data)# 生成优化建议recommendation = self._generate_recommendation(optimization, current_data)# 记录优化optimization_record = {"machine_id": machine_id,"current_state": current_data,"optimization": optimization,"recommendation": recommendation,"timestamp": time.time()}self.optimization_history.append(optimization_record)return optimization_recorddef _calculate_optimization(self, current_data: Dict[str, float]) -> Dict[str, float]:"""计算优化参数"""# 简化优化逻辑current_output = current_data['output_rate']current_power = current_data['power_consumption']# 计算与目标的差距output_gap = self.target_output - current_output# 优化建议optimization = {}# 调整速度if output_gap > 5:# 需要提高产量speed_increase = min(output_gap / 10, 0.2)  # 最多提高20%optimization['speed'] = current_data['speed'] * (1 + speed_increase)elif output_gap < -5:# 需要降低产量speed_decrease = min(-output_gap / 10, 0.1)  # 最多降低10%optimization['speed'] = current_data['speed'] * (1 - speed_decrease)else:optimization['speed'] = current_data['speed']# 调整压力if current_data['vibration'] > 80:# 振动过高,降低压力optimization['pressure'] = max(current_data['pressure'] * 0.9, 50)elif current_data['vibration'] < 30:# 振动过低,可适当增加压力optimization['pressure'] = min(current_data['pressure'] * 1.1, 100)else:optimization['pressure'] = current_data['pressure']# 优化能耗efficiency = current_output / current_powertarget_efficiency = self.target_output / self.max_power * 1.2  # 目标效率略高于理论值if efficiency < target_efficiency * 0.9:# 能效低,调整参数optimization['power_target'] = min(current_power * (target_efficiency / efficiency),self.max_power)else:optimization['power_target'] = current_powerreturn optimizationdef _generate_recommendation(self, optimization: Dict[str, float], current_data: Dict[str, float]) -> str:"""生成优化建议"""recommendations = []# 速度建议speed_change = (optimization['speed'] - current_data['speed']) / current_data['speed']if abs(speed_change) > 0.05:if speed_change > 0:recommendations.append(f"Increase speed by {speed_change:.1%} to improve output")else:recommendations.append(f"Decrease speed by {abs(speed_change):.1%} to reduce vibration")# 压力建议pressure_change = (optimization['pressure'] - current_data['pressure']) / current_data['pressure']if abs(pressure_change) > 0.05:if pressure_change > 0:recommendations.append(f"Increase pressure by {pressure_change:.1%} for better output")else:recommendations.append(f"Decrease pressure by {abs(pressure_change):.1%} to reduce vibration")# 能耗建议power_change = (optimization['power_target'] - current_data['power_consumption']) / current_data['power_consumption']if abs(power_change) > 0.05:if power_change < 0:savings = current_data['power_consumption'] - optimization['power_target']recommendations.append(f"Reduce power to {optimization['power_target']:.1f}kW, saving {savings:.1f}kW")else:recommendations.append(f"Increase power to {optimization['power_target']:.1f}kW for higher output")# 故障预警if current_data['temperature'] > 85:recommendations.append("WARNING: High temperature detected. Consider reducing load.")if current_data['vibration'] > 90:recommendations.append("CRITICAL: Excessive vibration. Immediate inspection required.")if not recommendations:return "Current settings are optimal for target output."return "Recommendations: " + "; ".join(recommendations)class PredictiveMaintenanceAgent:"""预测性维护Agent"""def __init__(self, state_encoder: nn.Module,data_processor: ProductionDataProcessor,failure_threshold: float = 0.8):self.state_encoder = state_encoderself.data_processor = data_processorself.failure_threshold = failure_thresholdself.machine_states = {}self.maintenance_history = []def update_machine_state(self, machine_id: str, sensor_data: pd.DataFrame):"""更新机器状态"""# 处理传感器数据processed_data = self.data_processor.transform(machine_id, sensor_data)# 编码状态with torch.no_grad():state_repr = self.state_encoder(processed_data.unsqueeze(0))# 计算故障概率failure_prob = self._calculate_failure_probability(sensor_data)# 存储状态self.machine_states[machine_id] = {"state_repr": state_repr,"last_data": sensor_data.iloc[-1].to_dict(),"failure_prob": failure_prob,"timestamp": time.time()}def _calculate_failure_probability(self, sensor_data: pd.DataFrame) -> float:"""计算故障概率"""# 简化实现:基于关键指标计算last_data = sensor_data.iloc[-1]# 基于温度、振动等指标计算故障概率temp_factor = min(max((last_data['temperature'] - 60) / 40, 0), 1)vibration_factor = min(last_data['vibration'] / 100, 1)pressure_factor = min(max((last_data['pressure'] - 80) / 20, 0), 1)# 组合因素failure_prob = (0.4 * temp_factor + 0.3 * vibration_factor + 0.2 * pressure_factor + 0.1 * np.random.rand())  # 随机因素return min(failure_prob, 1.0)def assess_failure_risk(self, machine_id: str) -> Dict[str, Any]:"""评估故障风险"""if machine_id not in self.machine_states:raise ValueError(f"Machine {machine_id} state not available")machine_state = self.machine_states[machine_id]current_data = machine_state["last_data"]failure_prob = machine_state["failure_prob"]# 生成维护建议recommendation = self._generate_maintenance_recommendation(failure_prob, current_data)# 记录评估assessment = {"machine_id": machine_id,"failure_probability": failure_prob,"is_critical": failure_prob > self.failure_threshold,"recommendation": recommendation,"timestamp": time.time(),"current_state": current_data}self.maintenance_history.append(assessment)return assessmentdef _generate_maintenance_recommendation(self, failure_prob: float, current_data: Dict[str, float]) -> str:"""生成维护建议"""if failure_prob > self.failure_threshold:return ("CRITICAL: High risk of failure. Immediate maintenance required. ""Recommendation: Shut down machine for inspection.")elif failure_prob > 0.5:return ("WARNING: Elevated risk of failure. Schedule maintenance within 24-48 hours. ""Monitor temperature and vibration closely.")elif failure_prob > 0.3:return ("NOTE: Slightly elevated risk. Consider scheduling maintenance in the next week. ""Check oil levels and filter conditions.")else:return "Normal operation. No immediate maintenance required."# 示例使用生产优化和预测维护Agent
if __name__ == "__main__":# 模拟获取机器传感器数据def generate_sensor_data(hours: int = 24, initial_state: Dict = None) -> pd.DataFrame:"""生成模拟传感器数据"""if initial_state is None:initial_state = {'temperature': 70,'vibration': 50,'pressure': 75,'speed': 1000,'power_consumption': 50,'output_rate': 80}timestamps = pd.date_range(start=pd.Timestamp.now(), periods=hours, freq='H')data = []state = initial_state.copy()for _ in range(hours):# 模拟状态变化state['temperature'] += random.uniform(-1, 2)state['vibration'] += random.uniform(-5, 10)state['pressure'] += random.uniform(-2, 3)state['speed'] += random.uniform(-50, 50)state['power_consumption'] += random.uniform(-5, 10)state['output_rate'] = max(0, min(100, state['speed'] / 12))# 限制范围state['temperature'] = max(40, min(100, state['temperature']))state['vibration'] = max(0, min(100, state['vibration']))state['pressure'] = max(50, min(100, state['pressure']))state['speed'] = max(500, min(1500, state['speed']))state['power_consumption'] = max(30, min(80, state['power_consumption']))data.append(state.copy())return pd.DataFrame(data, index=timestamps)# 创建组件state_encoder = MachineStateEncoder(input_dim=6)  # 6个传感器特征data_processor = ProductionDataProcessor()# 准备训练数据machine_ids = ['M1001', 'M1002', 'M1003']train_data = {}for machine_id in machine_ids:train_data[machine_id] = generate_sensor_data(hours=168)  # 一周数据data_processor.fit(train_data)# 创建生产优化Agentproduction_optimizer = ProductionOptimizer(state_encoder=state_encoder,data_processor=data_processor,target_output=85.0,  # 目标产出率85%max_power=70.0       # 最大功率70kW)# 创建预测维护Agentmaintenance_agent = PredictiveMaintenanceAgent(state_encoder=state_encoder,data_processor=data_processor,failure_threshold=0.75)# 模拟运行print("=== Production Optimization & Predictive Maintenance Simulation ===")for hour in range(12):print(f"\nHour {hour+1}:")for machine_id in machine_ids:# 生成新的传感器数据new_data = generate_sensor_data(hours=1, initial_state=production_optimizer.machine_states.get(machine_id, {'temperature': 70, 'vibration': 50})["last_data"] if machine_id in production_optimizer.machine_states else None)# 更新机器状态production_optimizer.update_machine_state(machine_id, new_data)maintenance_agent.update_machine_state(machine_id, new_data)# 优化生产optimization = production_optimizer.optimize_production(machine_id)print(f"{machine_id} production optimization:")print(f"  Current output: {optimization['current_state']['output_rate']:.1f}%")print(f"  Recommendation: {optimization['recommendation']}")# 评估故障风险maintenance = maintenance_agent.assess_failure_risk(machine_id)print(f"{machine_id} maintenance assessment:")print(f"  Failure probability: {maintenance['failure_probability']:.1%}")print(f"  Recommendation: {maintenance['recommendation']}")# 暂停模拟time.sleep(0.5)# 显示维护历史print("\nMaintenance History for M1001:")for i, record in enumerate(maintenance_agent.maintenance_history):if record["machine_id"] == "M1001":print(f"{i+1}. Failure prob: {record['failure_probability']:.1%}, Recommendation: {record['recommendation']}")# 高级生产优化:结合强化学习
class RLProductionOptimizer(ProductionOptimizer):"""基于强化学习的生产优化器"""def __init__(self,state_encoder: nn.Module,data_processor: ProductionDataProcessor,target_output: float,max_power: float,lr: float = 0.001,gamma: float = 0.95):super().__init__(state_encoder, data_processor, target_output, max_power)# DQN组件self.state_dim = 32  # state_encoder输出维度self.action_dim = 3  # 速度、压力、功率三个可调参数self.policy_net = nn.Sequential(nn.Linear(self.state_dim, 64),nn.ReLU(),nn.Linear(64, 64),nn.ReLU(),nn.Linear(64, self.action_dim * 3)  # 每个动作的三个选项)self.target_net = nn.Sequential(nn.Linear(self.state_dim, 64),nn.ReLU(),nn.Linear(64, 64),nn.ReLU(),nn.Linear(64, self.action_dim * 3))self.target_net.load_state_dict(self.policy_net.state_dict())self.target_net.eval()self.optimizer = torch.optim.Adam(self.policy_net.parameters(), lr=lr)self.gamma = gammaself.memory = []self.batch_size = 32self.epsilon = 1.0self.epsilon_min = 0.1self.epsilon_decay = 0.995self.action_options = [[-0.1, 0.0, 0.1],  # 速度调整:-10%, 0, +10%[-0.1, 0.0, 0.1],  # 压力调整:-10%, 0, +10%[-0.1, 0.0, 0.1]   # 功率调整:-10%, 0, +10%]def select_action(self, state_repr: torch.Tensor) -> List[float]:"""选择优化动作"""if np.random.rand() < self.epsilon:# 探索:随机选择return [random.choice(options) for options in self.action_options]else:# 利用:选择Q值最高的动作组合with torch.no_grad():q_values = self.policy_net(state_repr)q_values = q_values.view(self.action_dim, 3)# 为每个维度选择最佳动作action_indices = q_values.argmax(dim=1)actions = [self.action_options[i][idx.item()]for i, idx in enumerate(action_indices)]return actionsdef store_experience(self, state: torch.Tensor, action: List[float], reward: float, next_state: torch.Tensor, done: bool):"""存储经验"""# 将动作转换为索引action_indices = []for i, a in enumerate(action):idx = self.action_options[i].index(min(self.action_options[i], key=lambda x: abs(x-a)))action_indices.append(idx)self.memory.append((state, action_indices, reward, next_state, done))# 限制记忆大小if len(self.memory) > 10000:self.memory.pop(0)def train(self):"""训练DQN"""if len(self.memory) < self.batch_size:return# 采样批次batch = random.sample(self.memory, self.batch_size)states, actions, rewards, next_states, dones = zip(*batch)# 转换为张量states = torch.cat(states)actions = torch.LongTensor(actions)rewards = torch.FloatTensor(rewards)next_states = torch.cat(next_states)dones = torch.FloatTensor(dones)# 计算当前Q值current_q = self.policy_net(states)current_q = current_q.view(self.batch_size, self.action_dim, 3)# 选择动作对应的Q值action_mask = torch.zeros_like(current_q, dtype=torch.bool)for i in range(self.batch_size):for j in range(self.action_dim):action_mask[i, j, actions[i, j]] = Trueselected_q = current_q[action_mask].view(self.batch_size, self.action_dim)# 计算目标Q值with torch.no_grad():next_q = self.target_net(next_states)next_q = next_q.view(self.batch_size, self.action_dim, 3)max_next_q = next_q.max(dim=2)[0]target_q = rewards.unsqueeze(1) + self.gamma * max_next_q * (1 - dones.unsqueeze(1))# 计算损失loss = nn.MSELoss()(selected_q, target_q)# 优化模型self.optimizer.zero_grad()loss.backward()self.optimizer.step()# 更新epsilonself.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)def optimize_production(self, machine_id: str) -> Dict[str, Any]:"""强化学习增强的生产优化"""if machine_id not in self.machine_states:raise ValueError(f"Machine {machine_id} state not available")machine_state = self.machine_states[machine_id]current_data = machine_state["last_data"]state_repr = machine_state["state_repr"]# 选择动作action = self.select_action(state_repr)# 计算优化参数optimization = self._apply_rl_action(current_data, action)# 生成优化建议recommendation = self._generate_rl_recommendation(optimization, current_data, action)# 记录优化optimization_record = {"machine_id": machine_id,"current_state": current_data,"optimization": optimization,"recommendation": recommendation,"timestamp": time.time(),"rl_action": action}self.optimization_history.append(optimization_record)return optimization_recorddef _apply_rl_action(self, current_data: Dict[str, float], action: List[float]) -> Dict[str, float]:"""应用强化学习动作"""optimization = {}# 应用速度调整speed_change = action[0]optimization['speed'] = current_data['speed'] * (1 + speed_change)# 应用压力调整pressure_change = action[1]optimization['pressure'] = current_data['pressure'] * (1 + pressure_change)# 应用功率调整power_change = action[2]optimization['power_target'] = current_data['power_consumption'] * (1 + power_change)return optimizationdef _generate_rl_recommendation(self, optimization: Dict[str, float], current_data: Dict[str, float],action: List[float]) -> str:"""生成强化学习优化建议"""base_recommendation = super()._generate_recommendation(optimization, current_data)# 添加RL特定信息action_descriptions = []if abs(action[0]) > 0.05:direction = "increase" if action[0] > 0 else "decrease"action_descriptions.append(f"{direction} speed by {abs(action[0]):.0%}")if abs(action[1]) > 0.05:direction = "increase" if action[1] > 0 else "decrease"action_descriptions.append(f"{direction} pressure by {abs(action[1]):.0%}")if abs(action[2]) > 0.05:direction = "increase" if action[2] > 0 else "decrease"action_descriptions.append(f"{direction} power by {abs(action[2]):.0%}")rl_info = f"[RL Decision] {' and '.join(action_descriptions)} based on historical performance."return f"{rl_info}\n{base_recommendation}"def update_policy(self, machine_id: str, reward: float, done: bool = False):"""更新策略"""if len(self.optimization_history) < 2:return# 获取最近两次优化current_opt = self.optimization_history[-1]previous_opt = self.optimization_history[-2]if machine_id != previous_opt["machine_id"]:return# 存储经验self.store_experience(previous_opt["state_repr"],previous_opt["rl_action"],reward,current_opt["state_repr"],done)# 训练self.train()

Agent技术的伦理与社会责任

偏见检测与缓解

大模型Agent可能继承训练数据中的偏见,导致不公平的决策。以下是一个偏见检测与缓解框架的实现,展示了如何识别和减轻Agent决策中的偏见:

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.metrics import roc_auc_score
from typing import Dict, List, Tuple, Any, Optional
import reclass BiasDetector:"""偏见检测器"""def __init__(self, sensitive_attributes: List[str],protected_groups: Dict[str, List[str]],threshold: float = 0.1):"""初始化偏见检测器Args:sensitive_attributes: 敏感属性列表(如性别、种族)protected_groups: 受保护群体定义threshold: 偏见检测阈值"""self.sensitive_attributes = sensitive_attributesself.protected_groups = protected_groupsself.threshold = thresholddef detect_bias(self, inputs: pd.DataFrame,predictions: np.ndarray,labels: Optional[np.ndarray] = None) -> Dict[str, Dict[str, float]]:"""检测决策中的偏见Args:inputs: 输入数据predictions: 模型预测labels: 真实标签(可选,用于检测训练数据偏见)Returns:偏见检测结果"""results = {}for attr in self.sensitive_attributes:if attr not in inputs.columns:continue# 获取受保护群体protected_values = self.protected_groups.get(attr, [])# 检查每个受保护群体for group in protected_values:# 计算群体指标group_mask = inputs[attr] == groupnon_group_mask = inputs[attr] != groupif labels is not None:# 训练数据偏见检测group_positive_rate = np.mean(labels[group_mask])non_group_positive_rate = np.mean(labels[non_group_mask])disparity = abs(group_positive_rate - non_group_positive_rate)results.setdefault(attr, {})[group] = {"disparity": disparity,"group_rate": group_positive_rate,"non_group_rate": non_group_positive_rate,"bias_detected": disparity > self.threshold}else:# 预测偏见检测group_prediction_rate = np.mean(predictions[group_mask])non_group_prediction_rate = np.mean(predictions[non_group_mask])disparity = abs(group_prediction_rate - non_group_prediction_rate)results.setdefault(attr, {})[group] = {"disparity": disparity,"group_rate": group_prediction_rate,"non_group_rate": non_group_prediction_rate,"bias_detected": disparity > self.threshold}return resultsdef explain_bias(self, bias_results: Dict) -> List[str]:"""解释偏见检测结果"""explanations = []for attr, groups in bias_results.items():for group, metrics in groups.items():if metrics["bias_detected"]:explanation = (f"Potential bias detected for {attr}='{group}'. "f"Difference in decision rate: {metrics['disparity']:.2%} "f"(group: {metrics['group_rate']:.2%}, others: {metrics['non_group_rate']:.2%}).")explanations.append(explanation)return explanationsclass AdversarialDebiaser(nn.Module):"""对抗去偏模块"""def __init__(self, input_dim: int, sensitive_dim: int, hidden_dim: int = 64):"""初始化对抗去偏模块Args:input_dim: 主任务输入维度sensitive_dim: 敏感属性维度hidden_dim: 隐藏层维度"""super(AdversarialDebiaser, self).__init__()# 主任务分类器self.classifier = nn.Sequential(nn.Linear(input_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, 1),nn.Sigmoid())# 对抗分类器(用于去除敏感信息)self.adversary = nn.Sequential(nn.Linear(input_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, sensitive_dim))def forward(self, x: torch.Tensor, sensitive: torch.Tensor, lambda_param: float = 0.5):"""前向传播Args:x: 输入特征sensitive: 敏感属性lambda_param: 对抗损失权重Returns:主任务预测, 对抗任务预测, 损失"""# 主任务预测pred = self.classifier(x)# 对抗任务预测(尝试从表示中预测敏感属性)sensitive_pred = self.adversary(x)# 计算损失main_loss = nn.BCELoss()(pred, sensitive.float().view(-1, 1))adversary_loss = nn.CrossEntropyLoss()(sensitive_pred, sensitive)# 总损失(对抗训练)total_loss = main_loss - lambda_param * adversary_lossreturn pred, sensitive_pred, total_lossclass BiasMitigationAgent:"""偏见缓解Agent"""def __init__(self,model: nn.Module,bias_detector: BiasDetector,debiaser: Optional[AdversarialDebiaser] = None,mitigation_strategy: str = "reweighting"):"""初始化偏见缓解AgentArgs:model: 要缓解偏见的模型bias_detector: 偏见检测器debiaser: 对抗去偏模块mitigation_strategy: 缓解策略"""self.model = modelself.bias_detector = bias_detectorself.debiaser = debiaserself.mitigation_strategy = mitigation_strategyself.mitigation_history = []def detect_and_mitigate(self, inputs: pd.DataFrame,predictions: np.ndarray,labels: Optional[np.ndarray] = None) -> Dict[str, Any]:"""检测并缓解偏见Args:inputs: 输入数据predictions: 模型预测labels: 真实标签(可选)Returns:缓解结果"""# 检测偏见bias_results = self.bias_detector.detect_bias(inputs, predictions, labels)# 检查是否需要缓解needs_mitigation = any(metrics["bias_detected"] for attr_groups in bias_results.values() for metrics in attr_groups.values())# 生成解释explanations = self.bias_detector.explain_bias(bias_results)# 执行缓解(如果需要)mitigation = Noneif needs_mitigation and self.mitigation_strategy != "none":mitigation = self._apply_mitigation(inputs, predictions, bias_results)# 记录历史mitigation_record = {"bias_results": bias_results,"explanations": explanations,"mitigation_applied": mitigation is not None,"mitigation": mitigation,"timestamp": time.time()}self.mitigation_history.append(mitigation_record)return mitigation_recorddef _apply_mitigation(self, inputs: pd.DataFrame,predictions: np.ndarray,bias_results: Dict) -> Dict[str, Any]:"""应用偏见缓解"""if self.mitigation_strategy == "reweighting":return self._reweighting_mitigation(inputs, predictions, bias_results)elif self.mitigation_strategy == "adversarial":return self._adversarial_mitigation(inputs, predictions, bias_results)elif self.mitigation_strategy == "calibration":return self._calibration_mitigation(inputs, predictions, bias_results)else:raise ValueError(f"Unknown mitigation strategy: {self.mitigation_strategy}")def _reweighting_mitigation(self, inputs: pd.DataFrame,predictions: np.ndarray,bias_results: Dict) -> Dict[str, Any]:"""重新加权缓解"""weights = np.ones(len(inputs))# 为受偏见影响的群体增加权重for attr, groups in bias_results.items():for group, metrics in groups.items():if metrics["bias_detected"]:group_mask = inputs[attr] == groupweights[group_mask] *= 1.5  # 增加受影响群体的权重# 归一化权重weights /= np.sum(weights)return {"strategy": "reweighting","weights": weights.tolist(),"description": "Increased weights for potentially biased groups to balance training"}def _adversarial_mitigation(self, inputs: pd.DataFrame,predictions: np.ndarray,bias_results: Dict) -> Dict[str, Any]:"""对抗训练缓解"""if not self.debiaser:return {"strategy": "adversarial","status": "failed","error": "Adversarial debiaser not initialized"}# 实际应用中应执行对抗训练# 这里简化为返回配置return {"strategy": "adversarial","lambda_param": 0.5,"description": "Adversarial training to remove sensitive attribute information from representations"}def _calibration_mitigation(self, inputs: pd.DataFrame,predictions: np.ndarray,bias_results: Dict) -> Dict[str, Any]:"""校准缓解"""adjustments = {}# 为每个受偏见影响的群体计算校准因子for attr, groups in bias_results.items():for group, metrics in groups.items():if metrics["bias_detected"]:group_mask = inputs[attr] == group# 计算当前校准误差current_rate = np.mean(predictions[group_mask])target_rate = metrics["non_group_rate"]# 计算调整因子if current_rate > 0:adjustment = target_rate / current_rateadjustments[f"{attr}_{group}"] = float(adjustment)return {"strategy": "calibration","adjustments": adjustments,"description": "Probability adjustments to achieve equal decision rates across groups"}def apply_mitigation(self, inputs: pd.DataFrame,predictions: np.ndarray,mitigation: Dict) -> np.ndarray:"""应用具体的缓解措施"""if not mitigation["mitigation_applied"]:return predictionsstrategy = mitigation["mitigation"]["strategy"]if strategy == "calibration" and "adjustments" in mitigation["mitigation"]:# 应用校准调整adjusted_preds = predictions.copy()for attr_group, factor in mitigation["mitigation"]["adjustments"].items():attr, group = attr_group.split("_", 1)group_mask = inputs[attr] == groupadjusted_preds[group_mask] = np.clip(adjusted_preds[group_mask] * factor, 0, 1)return adjusted_predsreturn predictions# 示例使用偏见检测与缓解Agent
if __name__ == "__main__":# 创建模拟数据np.random.seed(42)# 生成包含敏感属性的数据n_samples = 1000data = {"gender": np.random.choice(["male", "female"], n_samples, p=[0.6, 0.4]),"race": np.random.choice(["white", "black", "hispanic"], n_samples, p=[0.5, 0.3, 0.2]),"age": np.random.normal(40, 10, n_samples).astype(int),"income": np.random.lognormal(10, 1, n_samples)}# 添加一些偏见:女性收入预测偏低data["income"] = [inc * 0.8 if gender == "female" else incfor gender, inc in zip(data["gender"], data["income"])]# 生成二元结果(例如贷款批准)data["loan_approved"] = ((data["income"] > np.percentile(data["income"], 50)) & (np.random.random(n_samples) > 0.2)  # 20%拒绝率).astype(int)# 女性额外20%拒绝率(模拟偏见)for i in range(n_samples):if data["gender"][i] == "female" and np.random.random() < 0.2:data["loan_approved"][i] = 0df = pd.DataFrame(data)# 创建偏见检测器bias_detector = BiasDetector(sensitive_attributes=["gender", "race"],protected_groups={"gender": ["female"],"race": ["black", "hispanic"]},threshold=0.1)# 模拟模型预测(带偏见)predictions = df["loan_approved"].values * 0.9  # 模拟预测概率# 创建偏见缓解Agentbias_agent = BiasMitigationAgent(model=None,  # 实际应用中应传入模型bias_detector=bias_detector,mitigation_strategy="calibration")# 检测并缓解偏见print("=== Bias Detection and Mitigation ===")result = bias_agent.detect_and_mitigate(inputs=df,predictions=predictions,labels=df["loan_approved"].values)# 显示结果print("\nBias Detection Results:")for attr, groups in result["bias_results"].items():for group, metrics in groups.items():print(f"{attr}='{group}': disparity={metrics['disparity']:.2%}, "f"bias detected={metrics['bias_detected']}")print("\nExplanations:")for explanation in result["explanations"]:print(f"- {explanation}")if result["mitigation_applied"]:print("\nMitigation Applied:")mitigation = result["mitigation"]print(f"Strategy: {mitigation['strategy']}")print(f"Description: {mitigation['description']}")# 应用缓解adjusted_predictions = bias_agent.apply_mitigation(df, predictions, result)# 检查缓解效果print("\nChecking mitigation effect:")for attr in ["gender"]:for group in ["female"]:group_mask = df[attr] == grouporiginal_rate = np.mean(predictions[group_mask])adjusted_rate = np.mean(adjusted_predictions[group_mask])print(f"{attr}='{group}': original={original_rate:.2%}, adjusted={adjusted_rate:.2%}")# 高级偏见缓解:动态公平性约束
class DynamicFairnessConstraint:"""动态公平性约束"""def __init__(self, sensitive_attributes: List[str],target_disparity: float = 0.05,constraint_type: str = "demographic_parity"):"""初始化动态公平性约束Args:sensitive_attributes: 敏感属性target_disparity: 目标差异constraint_type: 约束类型"""self.sensitive_attributes = sensitive_attributesself.target_disparity = target_disparityself.constraint_type = constraint_typeself.history = []def calculate_constraint_loss(self, predictions: torch.Tensor,sensitive: torch.Tensor,labels: Optional[torch.Tensor] = None) -> torch.Tensor:"""计算公平性约束损失Args:predictions: 模型预测sensitive: 敏感属性labels: 真实标签(用于某些约束类型)Returns:约束损失"""if self.constraint_type == "demographic_parity":return self._demographic_parity_loss(predictions, sensitive)elif self.constraint_type == "equalized_odds":if labels is None:raise ValueError("Labels required for equalized odds constraint")return self._equalized_odds_loss(predictions, sensitive, labels)else:raise ValueError(f"Unknown constraint type: {self.constraint_type}")def _demographic_parity_loss(self, predictions: torch.Tensor,sensitive: torch.Tensor) -> torch.Tensor:"""人口均等损失"""unique_vals = torch.unique(sensitive)rates = []for val in unique_vals:mask = (sensitive == val)if torch.sum(mask) > 0:rate = torch.mean(predictions[mask])rates.append(rate)if len(rates) < 2:return torch.tensor(0.0)# 计算最大差异max_diff = torch.max(torch.stack(rates)) - torch.min(torch.stack(rates))# 惩罚超过目标差异的部分violation = torch.relu(max_diff - self.target_disparity)return violationdef _equalized_odds_loss(self, predictions: torch.Tensor,sensitive: torch.Tensor,labels: torch.Tensor) -> torch.Tensor:"""均等机会损失"""unique_vals = torch.unique(sensitive)tpr_rates = []fpr_rates = []for val in unique_vals:mask = (sensitive == val)if torch.sum(mask) > 0:# 真阳性率pos_mask = mask & (labels == 1)if torch.sum(pos_mask) > 0:tpr = torch.mean(predictions[pos_mask])tpr_rates.append(tpr)# 假阳性率neg_mask = mask & (labels == 0)if torch.sum(neg_mask) > 0:fpr = torch.mean(predictions[neg_mask])fpr_rates.append(fpr)# 计算TPR差异tpr_violation = 0.0if len(tpr_rates) >= 2:tpr_max_diff = torch.max(torch.stack(tpr_rates)) - torch.min(torch.stack(tpr_rates))tpr_violation = torch.relu(tpr_max_diff - self.target_disparity)# 计算FPR差异fpr_violation = 0.0if len(fpr_rates) >= 2:fpr_max_diff = torch.max(torch.stack(fpr_rates)) - torch.min(torch.stack(fpr_rates))fpr_violation = torch.relu(fpr_max_diff - self.target_disparity)return (tpr_violation + fpr_violation) / 2class FairnessAwareTrainer:"""公平性感知训练器"""def __init__(self,model: nn.Module,optimizer: torch.optim.Optimizer,fairness_constraint: DynamicFairnessConstraint,main_loss_weight: float = 1.0,fairness_loss_weight: float = 0.5):"""初始化公平性感知训练器Args:model: 模型optimizer: 优化器fairness_constraint: 公平性约束main_loss_weight: 主任务损失权重fairness_loss_weight: 公平性损失权重"""self.model = modelself.optimizer = optimizerself.fairness_constraint = fairness_constraintself.main_loss_weight = main_loss_weightself.fairness_loss_weight = fairness_loss_weightself.criterion = nn.BCELoss()def train_step(self, inputs: torch.Tensor,labels: torch.Tensor,sensitive: torch.Tensor) -> Dict[str, float]:"""训练步骤Args:inputs: 输入数据labels: 标签sensitive: 敏感属性Returns:损失统计"""self.optimizer.zero_grad()# 前向传播outputs = self.model(inputs)outputs = torch.sigmoid(outputs)# 计算主任务损失main_loss = self.criterion(outputs, labels)# 计算公平性约束损失fairness_loss = self.fairness_constraint.calculate_constraint_loss(outputs, sensitive, labels)# 总损失total_loss = (self.main_loss_weight * main_loss + self.fairness_loss_weight * fairness_loss)# 反向传播total_loss.backward()self.optimizer.step()return {"total_loss": total_loss.item(),"main_loss": main_loss.item(),"fairness_loss": fairness_loss.item()}# 示例使用公平性感知训练
if __name__ == "__main__":print("\n\n=== Fairness-Aware Training Example ===")# 创建模拟模型class SimpleClassifier(nn.Module):def __init__(self, input_dim: int):super().__init__()self.fc = nn.Linear(input_dim, 1)def forward(self, x):return self.fc(x)# 创建组件model = SimpleClassifier(input_dim=5)optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# 创建公平性约束fairness_constraint = DynamicFairnessConstraint(sensitive_attributes=["gender"],target_disparity=0.05,constraint_type="demographic_parity")# 创建公平性感知训练器trainer = FairnessAwareTrainer(model=model,optimizer=optimizer,fairness_constraint=fairness_constraint)# 模拟训练数据X = torch.randn(100, 5)y = torch.rand(100) > 0.3  # 二元标签y = y.float()# 模拟敏感属性(0=male, 1=female)sensitive = torch.randint(0, 2, (100,))# 训练步骤print("Training with fairness constraints...")for epoch in range(5):losses = trainer.train_step(X, y, sensitive)print(f"Epoch {epoch+1}, Total Loss: {losses['total_loss']:.4f}, "f"Main Loss: {losses['main_loss']:.4f}, "f"Fairness Loss: {losses['fairness_loss']:.4f}")# 评估公平性with torch.no_grad():outputs = torch.sigmoid(model(X))# 计算不同群体的预测率male_mask = (sensitive == 0)female_mask = (sensitive == 1)male_rate = torch.mean(outputs[male_mask]).item()female_rate = torch.mean(outputs[female_mask]).item()print(f"\nPost-training disparity: {abs(male_rate - female_rate):.4f}")print(f"Male prediction rate: {male_rate:.4f}")print(f"Female prediction rate: {female_rate:.4f}")

透明度与可解释性增强

大模型Agent的决策过程往往缺乏透明度,影响用户信任。以下是一个可解释性增强框架的实现,展示了如何为Agent决策提供清晰解释:

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from typing import Dict, List, Tuple, Any, Optional
import re
import jsonclass ExplanationGenerator:"""解释生成器"""def __init__(self, model: nn.Module,feature_names: List[str],class_names: List[str]):"""初始化解释生成器Args:model: 被解释的模型feature_names: 特征名称class_names: 类别名称"""self.model = modelself.feature_names = feature_namesself.class_names = class_namesdef generate_explanation(self, input_data: np.ndarray,prediction: int,prediction_prob: float) -> Dict[str, Any]:"""生成决策解释Args:input_data: 输入数据prediction: 预测类别prediction_prob: 预测概率Returns:解释结果"""# 生成特征重要性feature_importance = self._calculate_feature_importance(input_data)# 生成对比案例contrastive_example = self._generate_contrastive_example(input_data, prediction)# 生成自然语言解释natural_language = self._generate_natural_language_explanation(input_data, prediction, prediction_prob,feature_importance,contrastive_example)return {"feature_importance": feature_importance,"contrastive_example": contrastive_example,"natural_language": natural_language,"prediction": prediction,"prediction_prob": prediction_prob}def _calculate_feature_importance(self, input_data: np.ndarray) -> List[Dict[str, float]]:"""计算特征重要性"""# 简化实现:使用梯度计算input_tensor = torch.FloatTensor(input_data).requires_grad_(True)# 前向传播output = self.model(input_tensor)_, predicted = torch.max(output.data, 1)# 反向传播获取梯度self.model.zero_grad()output[0, predicted.item()].backward()# 计算特征重要性gradients = input_tensor.grad.data.numpy()[0]abs_gradients = np.abs(gradients)normalized = abs_gradients / np.sum(abs_gradients)# 创建特征重要性列表feature_importance = [{"feature": self.feature_names[i], "importance": float(normalized[i])}for i in range(len(self.feature_names))]# 按重要性排序feature_importance.sort(key=lambda x: x["importance"], reverse=True)return feature_importancedef _generate_contrastive_example(self, input_data: np.ndarray,prediction: int) -> Dict[str, Any]:"""生成对比案例"""# 简化实现:随机修改特征contrastive_data = input_data.copy()# 找到最重要的特征并修改feature_importance = self._calculate_feature_importance(input_data)most_important_idx = self.feature_names.index(feature_importance[0]["feature"])# 修改特征值(假设数值特征)contrastive_data[0, most_important_idx] *= 0.5# 获取对比预测with torch.no_grad():contrastive_output = self.model(torch.FloatTensor(contrastive_data))_, contrastive_pred = torch.max(contrastive_output.data, 1)contrastive_prob = torch.softmax(contrastive_output, dim=1)[0, contrastive_pred.item()].item()return {"modified_feature": self.feature_names[most_important_idx],"original_value": float(input_data[0, most_important_idx]),"modified_value": float(contrastive_data[0, most_important_idx]),"original_prediction": prediction,"contrastive_prediction": contrastive_pred.item(),"contrastive_prob": contrastive_prob}def _generate_natural_language_explanation(self,input_data: np.ndarray,prediction: int,prediction_prob: float,feature_importance: List[Dict],contrastive_example: Dict) -> str:"""生成自然语言解释"""# 基本决策陈述explanation = (f"The model predicted '{self.class_names[prediction]}' "f"with {prediction_prob:.1%} confidence. ")# 添加关键特征top_features = feature_importance[:3]feature_descriptions = []for feat in top_features:value = input_data[0, self.feature_names.index(feat["feature"])]feature_descriptions.append(f"{feat['feature']} ({value:.2f}, importance: {feat['importance']:.0%})")explanation += "This decision was primarily influenced by: " + ", ".join(feature_descriptions) + ". "# 添加对比案例if contrastive_example["original_prediction"] != contrastive_example["contrastive_prediction"]:explanation += (f"If {contrastive_example['modified_feature']} were lower "f"({contrastive_example['modified_value']:.2f} instead of {contrastive_example['original_value']:.2f}), "f"the model would have predicted '{self.class_names[contrastive_example['contrastive_prediction']]}'.")return explanationclass LocalInterpretableModel:"""局部可解释模型(LIME的简化实现)"""def __init__(self,model: nn.Module,feature_names: List[str],class_names: List[str],kernel_width: float = 0.25):"""初始化局部可解释模型Args:model: 被解释的模型feature_names: 特征名称class_names: 类别名称kernel_width: 核宽度"""self.model = modelself.feature_names = feature_namesself.class_names = class_namesself.kernel_width = kernel_widthdef explain_instance(self, instance: np.ndarray,num_samples: int = 5000,top_labels: int = 1) -> Dict[str, Any]:"""解释单个实例Args:instance: 要解释的实例num_samples: 采样数量top_labels: 要解释的标签数量Returns:解释结果"""# 生成扰动样本perturbed_samples, distances, labels = self._generate_perturbed_samples(instance, num_samples)# 训练可解释模型explanation = self._train_explainable_model(instance, perturbed_samples, distances, labels, top_labels)return explanationdef _generate_perturbed_samples(self, instance: np.ndarray,num_samples: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:"""生成扰动样本"""n_features = instance.shape[1]samples = []# 生成扰动for _ in range(num_samples):# 随机选择要扰动的特征mask = np.random.binomial(1, 0.5, n_features)# 扰动特征值perturbation = np.random.normal(0, 0.1, n_features)perturbed = instance.copy()perturbed[0, mask == 1] += perturbation[mask == 1]samples.append(perturbed[0])samples = np.array(samples)# 获取预测with torch.no_grad():inputs = torch.FloatTensor(samples)outputs = self.model(inputs)probabilities = torch.softmax(outputs, dim=1).numpy()labels = np.argmax(probabilities, axis=1)# 计算距离distances = np.sqrt(np.sum((samples - instance)**2, axis=1))return samples, distances, labelsdef _train_explainable_model(self,instance: np.ndarray,samples: np.ndarray,distances: np.ndarray,labels: np.ndarray,top_labels: int) -> Dict[str, Any]:"""训练可解释模型"""# 简化实现:使用决策树explanations = {}for label in range(top_labels):# 选择目标类别的样本label_mask = (labels == label)if not np.any(label_mask):continue# 计算权重(基于距离)weights = np.exp(-(distances**2) / (2 * self.kernel_width**2))# 训练决策树tree = DecisionTreeClassifier(max_depth=3)tree.fit(samples, labels == label, sample_weight=weights)# 提取规则rules = self._extract_rules(tree)explanations[label] = {"label": self.class_names[label],"rules": rules,"feature_importance": self._get_feature_importance(tree)}return explanationsdef _extract_rules(self, tree: DecisionTreeClassifier) -> List[str]:"""提取决策树规则"""# 简化实现return ["Rule 1", "Rule 2"]def _get_feature_importance(self, tree: DecisionTreeClassifier) -> List[Dict[str, float]]:"""获取特征重要性"""importance = tree.feature_importances_feature_importance = [{"feature": self.feature_names[i], "importance": float(importance[i])}for i in range(len(self.feature_names))]feature_importance.sort(key=lambda x: x["importance"], reverse=True)return feature_importanceclass ExplainableAgent:"""可解释Agent"""def __init__(self,model: nn.Module,feature_names: List[str],class_names: List[str],explanation_style: str = "detailed"):"""初始化可解释AgentArgs:model: 被包装的模型feature_names: 特征名称class_names: 类别名称explanation_style: 解释风格"""self.model = modelself.feature_names = feature_namesself.class_names = class_namesself.explanation_style = explanation_styleself.explanation_generator = ExplanationGenerator(model, feature_names, class_names)self.local_interpretability = LocalInterpretableModel(model, feature_names, class_names)self.explanation_history = []def predict_with_explanation(self, input_data: np.ndarray) -> Dict[str, Any]:"""预测并提供解释Args:input_data: 输入数据Returns:预测结果和解释"""# 获取模型预测with torch.no_grad():inputs = torch.FloatTensor(input_data)outputs = self.model(inputs)probabilities = torch.softmax(outputs, dim=1)_, predicted = torch.max(probabilities, 1)# 生成解释explanation = self.explanation_generator.generate_explanation(input_data,predicted.item(),probabilities[0, predicted.item()].item())# 本地可解释性(可选)local_explanation = Noneif self.explanation_style == "detailed":local_explanation = self.local_interpretability.explain_instance(input_data, top_labels=1)# 创建完整结果result = {"prediction": predicted.item(),"prediction_label": self.class_names[predicted.item()],"prediction_prob": probabilities[0, predicted.item()].item(),"explanation": explanation,"local_explanation": local_explanation,"timestamp": time.time()}# 记录历史self.explanation_history.append(result)return resultdef get_explanation_history(self) -> List[Dict]:"""获取解释历史"""return self.explanation_history# 示例使用可解释Agent
if __name__ == "__main__":# 创建模拟模型class SimpleClassifier(nn.Module):def __init__(self, input_dim: int, num_classes: int):super().__init__()self.fc = nn.Linear(input_dim, num_classes)def forward(self, x):return self.fc(x)# 创建可解释Agentfeature_names = ["age", "income", "credit_score", "debt_ratio", "employment_years"]class_names = ["low_risk", "medium_risk", "high_risk"]model = SimpleClassifier(input_dim=len(feature_names), num_classes=len(class_names))agent = ExplainableAgent(model=model,feature_names=feature_names,class_names=class_names,explanation_style="detailed")# 模拟输入数据input_data = np.array([[45, 85000, 720, 0.35, 12]])# 预测并获取解释print("=== Explainable AI Example ===")result = agent.predict_with_explanation(input_data)# 显示结果print(f"Prediction: {result['prediction_label']} ({result['prediction_prob']:.1%} confidence)")print("\nFeature Importance:")for i, feat in enumerate(result["explanation"]["feature_importance"][:3]):print(f"{i+1}. {feat['feature']}: {feat['importance']:.1%}")print("\nNatural Language Explanation:")print(result["explanation"]["natural_language"])# 显示对比案例contrastive = result["explanation"]["contrastive_example"]print("\nContrastive Example:")print(f"If {contrastive['modified_feature']} were lower ({contrastive['modified_value']:.2f} instead of {contrastive['original_value']:.2f}), "f"the prediction would change to: {class_names[contrastive['contrastive_prediction']]} "f"({contrastive['contrastive_prob']:.1%} confidence)")# 高级可解释性:基于因果推理的解释
class CausalExplanationGenerator:"""基于因果推理的解释生成器"""def __init__(self, model: nn.Module,feature_names: List[str],class_names: List[str],causal_graph: Dict[str, List[str]]):"""初始化因果解释生成器Args:model: 被解释的模型feature_names: 特征名称class_names: 类别名称causal_graph: 因果图(特征之间的因果关系)"""self.model = modelself.feature_names = feature_namesself.class_names = class_namesself.causal_graph = causal_graphself.structural_equation_models = self._build_structural_equation_models()def _build_structural_equation_models(self) -> Dict[str, Any]:"""构建结构方程模型"""# 实际应用中应从数据学习SEM# 这里简化为模拟sems = {}for feature in self.feature_names:# 简单线性模型sems[feature] = {"parents": self.causal_graph.get(feature, []),"coefficients": {parent: np.random.uniform(0.1, 0.5) for parent in self.causal_graph.get(feature, [])},"noise_std": 0.1}return semsdef generate_causal_explanation(self, input_data: np.ndarray,prediction: int) -> Dict[str, Any]:"""生成因果解释Args:input_data: 输入数据prediction: 预测类别Returns:因果解释"""# 识别关键因果路径causal_paths = self._identify_causal_paths(input_data, prediction)# 生成干预分析intervention_analysis = self._perform_intervention_analysis(input_data, prediction)# 生成自然语言因果解释natural_language = self._generate_causal_natural_language(input_data, prediction, causal_paths, intervention_analysis)return {"causal_paths": causal_paths,"intervention_analysis": intervention_analysis,"natural_language": natural_language,"prediction": prediction}def _identify_causal_paths(self, input_data: np.ndarray,prediction: int) -> List[Dict[str, Any]]:"""识别关键因果路径"""# 简化实现paths = []# 检查每个特征对预测的影响for i, feature in enumerate(self.feature_names):# 模拟干预:将特征设置为均值intervened_data = input_data.copy()intervened_data[0, i] = 0  # 假设特征已标准化# 获取干预后的预测with torch.no_grad():intervened_pred = self.model(torch.FloatTensor(intervened_data))_, intervened_class = torch.max(intervened_pred, 1)# 如果干预改变预测,说明该特征在因果路径上if intervened_class.item() != prediction:# 估计影响大小impact = abs(torch.softmax(intervened_pred, dim=1)[0, prediction].item() - torch.softmax(self.model(torch.FloatTensor(input_data)), dim=1)[0, prediction].item())paths.append({"feature": feature,"impact": float(impact),"intervention_effect": "changed_prediction"})# 按影响排序paths.sort(key=lambda x: x["impact"], reverse=True)return pathsdef _perform_intervention_analysis(self, input_data: np.ndarray,prediction: int) -> Dict[str, Any]:"""执行干预分析"""# 简化实现analysis = {"sufficient_conditions": [],"necessary_conditions": []}# 检查必要条件for i, feature in enumerate(self.feature_names):# 检查如果特征值较低,预测是否会改变low_value_data = input_data.copy()low_value_data[0, i] *= 0.5with torch.no_grad():low_pred = self.model(torch.FloatTensor(low_value_data))_, low_class = torch.max(low_pred, 1)if low_class.item() != prediction:analysis["necessary_conditions"].append({"feature": feature,"threshold": float(input_data[0, i] * 0.5),"effect": "prediction changes below this threshold"})return analysisdef _generate_causal_natural_language(self,input_data: np.ndarray,prediction: int,causal_paths: List[Dict],intervention_analysis: Dict) -> str:"""生成因果自然语言解释"""explanation = (f"The model predicted '{self.class_names[prediction]}' primarily because of ")# 添加关键因果路径if causal_paths:top_paths = causal_paths[:2]path_descriptions = []for path in top_paths:value = input_data[0, self.feature_names.index(path["feature"])]path_descriptions.append(f"{path['feature']} is high ({value:.2f}), which directly contributes to this prediction")explanation += " and ".join(path_descriptions) + ". "else:explanation += "multiple factors working together. "# 添加必要条件if intervention_analysis["necessary_conditions"]:necessary = intervention_analysis["necessary_conditions"][0]explanation += (f"For this prediction to hold, {necessary['feature']} must be above {necessary['threshold']:.2f}; "f"if it were lower, the prediction would change.")return explanation# 示例使用因果解释
if __name__ == "__main__":print("\n\n=== Causal Explanation Example ===")# 定义因果图causal_graph = {"credit_score": ["income", "employment_years"],"debt_ratio": ["income", "credit_score"],"risk_prediction": ["credit_score", "debt_ratio", "age"]}# 创建因果解释生成器causal_explainer = CausalExplanationGenerator(model=model,feature_names=feature_names,class_names=class_names,causal_graph=causal_graph)# 生成因果解释with torch.no_grad():outputs = model(torch.FloatTensor(input_data))_, predicted = torch.max(outputs, 1)causal_explanation = causal_explainer.generate_causal_explanation(input_data, predicted.item())# 显示结果print(f"Causal Explanation for {class_names[predicted.item()]} prediction:")print(causal_explanation["natural_language"])print("\nKey Causal Paths:")for i, path in enumerate(causal_explanation["causal_paths"][:3]):print(f"{i+1}. {path['feature']} (impact: {path['impact']:.2%})")print("\nNecessary Conditions:")for cond in causal_explanation["intervention_analysis"]["necessary_conditions"]:print(f"- {cond['feature']} > {cond['threshold']:.2f}")

未来展望与总结

Agent技术的演进路径

大模型Agent技术正处于快速发展阶段,未来几年将沿着以下几个关键方向演进:

  1. 认知能力提升:从当前的模式匹配向真正的推理和问题解决能力发展
  2. 多模态融合:无缝整合文本、图像、音频等多种模态信息
  3. 自主学习能力:减少对人工标注数据的依赖,实现持续自主学习
  4. 人机协作优化:建立更自然、高效的人机协作模式

以下是一个预测性框架,展示了Agent技术的演进路径和关键技术里程碑:

import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
from typing import Dict, List, Tuple, Any, Optional
import pandas as pdclass TechnologyRoadmap:"""技术路线图"""def __init__(self, start_year: int = 2023):self.start_year = start_yearself.technology_areas = ["基础模型能力","推理与规划","记忆与学习","多模态理解","人机协作","安全与伦理"]self.milestones = []def add_milestone(self, year: int,area: str,title: str,description: str,impact: float,feasibility: float):"""添加技术里程碑Args:year: 预期实现年份area: 技术领域title: 里程碑标题description: 详细描述impact: 影响力(0-1)feasibility: 可行性(0-1)"""if area not in self.technology_areas:raise ValueError(f"Unknown technology area: {area}")self.milestones.append({"year": year,"area": area,"title": title,"description": description,"impact": impact,"feasibility": feasibility})def generate_roadmap(self) -> pd.DataFrame:"""生成技术路线图数据"""data = {"Year": [],"Area": [],"Title": [],"Impact": [],"Feasibility": []}for milestone in self.milestones:data["Year"].append(milestone["year"])data["Area"].append(milestone["area"])data["Title"].append(milestone["title"])data["Impact"].append(milestone["impact"])data["Feasibility"].append(milestone["feasibility"])return pd.DataFrame(data)def visualize_roadmap(self, save_path: Optional[str] = None):"""可视化技术路线图"""df = self.generate_roadmap()# 创建图表plt.figure(figsize=(14, 8))# 为每个技术领域设置颜色area_colors = {"基础模型能力": "#1f77b4","推理与规划": "#ff7f0e","记忆与学习": "#2ca02c","多模态理解": "#d62728","人机协作": "#9467bd","安全与伦理": "#8c564b"}# 绘制散点图for area in self.technology_areas:area_data = df[df["Area"] == area]plt.scatter(area_data["Year"],area_data["Impact"],s=area_data["Feasibility"] * 1000,alpha=0.6,color=area_colors[area],label=area,edgecolor="black")# 添加标签for i, row in df.iterrows():plt.annotate(row["Title"],(row["Year"], row["Impact"]),xytext=(5, 5),textcoords="offset points")# 设置图表属性plt.title("大模型Agent技术发展路线图 (2023-2030)", fontsize=16)plt.xlabel("年份", fontsize=12)plt.ylabel("技术影响力", fontsize=12)plt.grid(True, linestyle="--", alpha=0.7)plt.legend(title="技术领域")plt.xticks(range(self.start_year, 2031))plt.ylim(0, 1.1)# 调整布局plt.tight_layout()# 保存或显示if save_path:plt.savefig(save_path, dpi=300, bbox_inches="tight")else:plt.show()# 创建技术路线图
roadmap = TechnologyRoadmap(start_year=2023)# 添加基础模型能力里程碑
roadmap.add_milestone(year=2023,area="基础模型能力",title="百亿参数模型普及",description="百亿参数级大模型成为行业标准,支持基本对话和任务执行",impact=0.7,feasibility=1.0
)
roadmap.add_milestone(year=2024,area="基础模型能力",title="多任务统一模型",description="单一模型支持多种任务类型,减少模型切换开销",impact=0.8,feasibility=0.9
)
roadmap.add_milestone(year=2025,area="基础模型能力",title="高效推理架构",description="新型推理架构使大模型推理成本降低50%",impact=0.9,feasibility=0.85
)
roadmap.add_milestone(year=2027,area="基础模型能力",title="万亿参数实用化",description="万亿参数模型在特定领域实现商业化应用",impact=1.0,feasibility=0.6
)# 添加推理与规划里程碑
roadmap.add_milestone(year=2023,area="推理与规划",title="简单任务规划",description="Agent能够执行预定义的简单任务序列",impact=0.5,feasibility=1.0
)
roadmap.add_milestone(year=2024,area="推理与规划",title="动态任务规划",description="Agent能够根据环境变化动态调整任务规划",impact=0.7,feasibility=0.85
)
roadmap.add_milestone(year=2026,area="推理与规划",title="复杂问题分解",description="Agent能够将复杂问题分解为可执行的子任务",impact=0.9,feasibility=0.7
)
roadmap.add_milestone(year=2028,area="推理与规划",title="创造性问题解决",description="Agent能够提出创新性解决方案,超越预定义模式",impact=1.0,feasibility=0.5
)# 添加记忆与学习里程碑
roadmap.add_milestone(year=2023,area="记忆与学习",title="短期对话记忆",description="Agent能够维持短时对话上下文",impact=0.4,feasibility=1.0
)
roadmap.add_milestone(year=2024,area="记忆与学习",title="长期个性化记忆",description="Agent能够学习并应用用户偏好和历史",impact=0.7,feasibility=0.8
)
roadmap.add_milestone(year=2025,area="记忆与学习",title="跨会话知识迁移",description="Agent能够在不同会话间迁移学习到的知识",impact=0.8,feasibility=0.75
)
roadmap.add_milestone(year=2027,area="记忆与学习",title="自主知识构建",description="Agent能够从交互中自主构建知识体系",impact=0.95,feasibility=0.6
)# 添加多模态理解里程碑
roadmap.add_milestone(year=2023,area="多模态理解",title="文本-图像基础理解",description="Agent能够理解基本的图文关联",impact=0.5,feasibility=1.0
)
roadmap.add_milestone(year=2024,area="多模态理解",title="跨模态推理",description="Agent能够在不同模态间进行推理和转换",impact=0.75,feasibility=0.85
)
roadmap.add_milestone(year=2026,area="多模态理解",title="实时多模态交互",description="Agent能够处理实时视频、音频等流式多模态输入",impact=0.9,feasibility=0.7
)
roadmap.add_milestone(year=2029,area="多模态理解",title="全感官交互",description="Agent能够整合视觉、听觉、触觉等多感官信息",impact=1.0,feasibility=0.4
)# 添加人机协作里程碑
roadmap.add_milestone(year=2023,area="人机协作",title="指令跟随",description="Agent能够理解和执行明确指令",impact=0.4,feasibility=1.0
)
roadmap.add_milestone(year=2024,area="人机协作",title="意图理解",description="Agent能够推断用户隐含意图",impact=0.65,feasibility=0.9
)
roadmap.add_milestone(year=2025,area="人机协作",title="主动协作",description="Agent能够主动提出建议并参与决策",impact=0.8,feasibility=0.8
)
roadmap.add_milestone(year=2027,area="人机协作",title="无缝人机团队",description="Agent成为高效人机协作团队的自然成员",impact=0.95,feasibility=0.65
)# 添加安全与伦理里程碑
roadmap.add_milestone(year=2023,area="安全与伦理",title="基础内容过滤",description="Agent具备基本有害内容过滤能力",impact=0.3,feasibility=1.0
)
roadmap.add_milestone(year=2024,area="安全与伦理",title="偏见检测",description="Agent能够检测并报告潜在偏见",impact=0.55,feasibility=0.85
)
roadmap.add_milestone(year=2026,area="安全与伦理",title="可验证决策",description="Agent提供可验证的决策依据和解释",impact=0.75,feasibility=0.7
)
roadmap.add_milestone(year=2028,area="安全与伦理",title="伦理对齐框架",description="Agent内置全面的伦理决策框架",impact=0.9,feasibility=0.55
)# 生成并可视化路线图
print("=== 大模型Agent技术发展路线图 ===")
roadmap_df = roadmap.generate_roadmap()
print(roadmap_df.sort_values(['Year', 'Impact'], ascending=[True, False]))# 可视化(在实际环境中会生成图表)
try:roadmap.visualize_roadmap()print("\n技术路线图可视化已生成。")
except Exception as e:print(f"可视化生成失败: {e}")print("在支持matplotlib的环境中运行可查看可视化图表。")# 高级分析:技术发展预测模型
class TechnologyAdoptionModel:"""技术采纳预测模型"""def __init__(self, innovation_rate: float = 0.1,imitation_rate: float = 0.3,max_adopters: float = 1.0):"""初始化技术采纳模型Args:innovation_rate: 创新率(早期采用者比例)imitation_rate: 模仿率(社会影响系数)max_adopters: 最大采用者比例"""self.innovation_rate = innovation_rateself.imitation_rate = imitation_rateself.max_adopters = max_adoptersdef bass_model(self, t: float) -> float:"""Bass扩散模型Args:t: 时间(年)Returns:采用者比例"""p = self.innovation_rateq = self.imitation_ratereturn self.max_adopters * ((p + q)**2 / p * np.exp(-(p + q) * t) / (q / p * np.exp(-(p + q) * t) + 1)**2)def cumulative_adoption(self, t: float) -> float:"""累计采纳率Args:t: 时间(年)Returns:累计采纳比例"""p = self.innovation_rateq = self.imitation_ratereturn self.max_adopters * (1 - np.exp(-(p + q) * t)) / (1 + (q / p) * np.exp(-(p + q) * t))class AgentTechnologyForecast:"""Agent技术预测"""def __init__(self):# 为不同技术领域设置Bass模型参数self.technology_models = {"基础模型能力": TechnologyAdoptionModel(0.03, 0.35, 0.95),"推理与规划": TechnologyAdoptionModel(0.02, 0.25, 0.85),"记忆与学习": TechnologyAdoptionModel(0.025, 0.3, 0.9),"多模态理解": TechnologyAdoptionModel(0.02, 0.28, 0.8),"人机协作": TechnologyAdoptionModel(0.015, 0.22, 0.75),"安全与伦理": TechnologyAdoptionModel(0.01, 0.18, 0.7)}def forecast_adoption(self, years: List[int]) -> pd.DataFrame:"""预测技术采纳率Args:years: 预测年份列表Returns:采纳率数据框"""data = {"Year": []}for area in self.technology_models.keys():data[area] = []for year in years:# 相对于2023年的时间t = year - 2023data["Year"].append(year)for area, model in self.technology_models.items():data[area].append(model.cumulative_adoption(t))return pd.DataFrame(data)def identify_inflection_points(self) -> Dict[str, int]:"""识别拐点年份(采纳率增长最快的时间)Returns:拐点年份字典"""inflection_points = {}for area, model in self.technology_models.items():# 找到二阶导数为零的点(近似)max_growth = 0inflection_year = 2023for t in range(0, 15):# 一阶导数(近似)adoption_t = model.bass_model(t)adoption_t1 = model.bass_model(t + 0.1)growth = (adoption_t1 - adoption_t) / 0.1if growth > max_growth:max_growth = growthinflection_year = 2023 + tinflection_points[area] = inflection_yearreturn inflection_points# 示例技术预测
if __name__ == "__main__":print("\n\n=== Agent技术采纳预测 ===")# 创建预测模型forecast = AgentTechnologyForecast()# 预测2023-2030年采纳率adoption_df = forecast.forecast_adoption(list(range(2023, 2031)))print("技术采纳率预测 (%):")print(adoption_df.set_index('Year').multiply(100).round(1))# 识别拐点inflection_points = forecast.identify_inflection_points()print("\n技术拐点预测(采纳增速最快的年份):")for area, year in inflection_points.items():print(f"{area}: {year}")# 可视化预测(在支持matplotlib的环境中)try:plt.figure(figsize=(12, 8))for area in forecast.technology_models.keys():plt.plot(adoption_df["Year"], adoption_df[area] * 100, label=area, marker='o')plt.title("大模型Agent技术采纳率预测 (2023-2030)", fontsize=16)plt.xlabel("年份", fontsize=12)plt.ylabel("采纳率 (%)", fontsize=12)plt.grid(True, linestyle="--", alpha=0.7)plt.legend()plt.tight_layout()print("\n技术采纳预测可视化已生成。")except Exception as e:print(f"可视化生成失败: {e}")

结论与建议

大模型Agent技术正处于从理论研究向实际应用的关键转折点。通过对当前技术发展态势的分析,我们可以得出以下结论和建议:

  1. 技术成熟度评估

    • 基础模型能力已相对成熟,但推理与规划、记忆与学习等领域仍有较大提升空间
    • 多模态理解和人机协作是下一阶段的关键突破口
    • 安全与伦理方面的技术发展相对滞后,需要加速推进
  2. 行业应用建议

    • 金融、医疗、制造等高价值领域应优先部署Agent技术
    • 从辅助决策开始,逐步过渡到自主决策
    • 建立人机协作框架,充分发挥人类和Agent的各自优势
  3. 研发重点建议

    • 加强Agent的记忆管理和长期学习能力
    • 开发更高效的推理和规划算法
    • 构建全面的评估框架,衡量Agent的综合能力
    • 深入研究Agent的安全性和可解释性
  4. 社会影响与责任

    • 建立Agent技术的伦理准则和监管框架
    • 重视技术对就业市场的影响,提前规划转型
    • 促进技术普惠,避免数字鸿沟扩大

以下是一个Agent技术评估框架的实现,可以帮助组织评估和选择适合的Agent解决方案:

import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Any, Optionalclass AgentCapabilityAssessment:"""Agent能力评估框架"""def __init__(self):# 评估维度和权重self.dimensions = {"基础能力": 0.2,"推理与规划": 0.25,"记忆与学习": 0.15,"多模态理解": 0.15,"人机协作": 0.15,"安全与伦理": 0.1}# 每个维度的具体指标self.metrics = {"基础能力": [("语言理解", 0.3),("任务执行", 0.4),("响应速度", 0.3)],"推理与规划": [("逻辑推理", 0.3),("问题分解", 0.3),("动态规划", 0.4)],"记忆与学习": [("短期记忆", 0.3),("长期记忆", 0.4),("持续学习", 0.3)],"多模态理解": [("跨模态关联", 0.4),("实时处理", 0.3),("多模态生成", 0.3)],"人机协作": [("意图理解", 0.4),("主动协作", 0.3),("自然交互", 0.3)],"安全与伦理": [("内容安全", 0.3),("偏见控制", 0.3),("可解释性", 0.4)]}def assess_agent(self, agent_scores: Dict[str, Dict[str, float]]) -> Dict[str, Any]:"""评估Agent能力Args:agent_scores: Agent在各指标上的得分Returns:评估结果"""# 计算各维度得分dimension_scores = {}for dimension, metrics in self.metrics.items():score = 0for metric, weight in metrics:if dimension in agent_scores and metric in agent_scores[dimension]:score += agent_scores[dimension][metric] * weightdimension_scores[dimension] = score# 计算综合得分total_score = sum(dimension_scores[dimension] * self.dimensions[dimension]for dimension in self.dimensions)# 生成评估报告report = {"dimension_scores": dimension_scores,"total_score": total_score,"strengths": self._identify_strengths(dimension_scores),"weaknesses": self._identify_weaknesses(dimension_scores),"recommendations": self._generate_recommendations(dimension_scores)}return reportdef _identify_strengths(self, scores: Dict[str, float]) -> List[str]:"""识别优势"""avg = np.mean(list(scores.values()))return [dim for dim, score in scores.items() if score > avg + 0.1]def _identify_weaknesses(self, scores: Dict[str, float]) -> List[str]:"""识别劣势"""avg = np.mean(list(scores.values()))return [dim for dim, score in scores.items() if score < avg - 0.1]def _generate_recommendations(self, scores: Dict[str, float]) -> List[str]:"""生成建议"""recommendations = []# 针对薄弱环节提供建议weaknesses = self._identify_weaknesses(scores)for weakness in weaknesses:if weakness == "推理与规划":recommendations.append("加强推理能力训练,引入更多逻辑推理和问题分解任务")elif weakness == "记忆与学习":recommendations.append("优化记忆管理系统,增强长期记忆和知识迁移能力")elif weakness == "安全与伦理":recommendations.append("强化安全机制,增加偏见检测和可解释性功能")# 如果综合得分高,建议高级应用场景if sum(scores[dim] * self.dimensions[dim] for dim in self.dimensions) > 0.8:recommendations.append("该Agent适合部署在高价值、高复杂度场景,如医疗诊断或金融决策")return recommendationsclass AgentSelectionAdvisor:"""Agent选择顾问"""def __init__(self):# 行业需求配置self.industry_requirements = {"金融": {"基础能力": 0.25,"推理与规划": 0.3,"安全与伦理": 0.25,"记忆与学习": 0.1,"多模态理解": 0.05,"人机协作": 0.05},"医疗": {"基础能力": 0.2,"推理与规划": 0.25,"安全与伦理": 0.3,"记忆与学习": 0.15,"多模态理解": 0.05,"人机协作": 0.05},"制造": {"基础能力": 0.2,"推理与规划": 0.25,"多模态理解": 0.2,"记忆与学习": 0.15,"人机协作": 0.15,"安全与伦理": 0.05},"客服": {"基础能力": 0.25,"人机协作": 0.3,"多模态理解": 0.2,"记忆与学习": 0.15,"推理与规划": 0.05,"安全与伦理": 0.05}}def recommend_agents(self,agents: List[Dict],industry: str,budget: float) -> List[Dict]:"""推荐适合的AgentArgs:agents: Agent列表industry: 行业budget: 预算Returns:推荐结果"""if industry not in self.industry_requirements:raise ValueError(f"Unsupported industry: {industry}")# 计算每个Agent的匹配度recommendations = []for agent in agents:# 获取Agent的评估结果assessment = agent["assessment"]scores = assessment["dimension_scores"]# 计算行业匹配度industry_weights = self.industry_requirements[industry]match_score = sum(scores[dimension] * industry_weights[dimension]for dimension in industry_weights)# 考虑预算within_budget = agent["cost"] <= budgetrecommendations.append({"agent_id": agent["id"],"agent_name": agent["name"],"match_score": match_score,"within_budget": within_budget,"strengths": assessment["strengths"],"weaknesses": assessment["weaknesses"],"cost": agent["cost"]})# 按匹配度排序recommendations.sort(key=lambda x: x["match_score"], reverse=True)return recommendations# 示例Agent评估与选择
if __name__ == "__main__":# 创建评估框架assessment = AgentCapabilityAssessment()# 模拟Agent1(金融领域)agent1_scores = {"基础能力": {"语言理解": 0.85,"任务执行": 0.9,"响应速度": 0.8},"推理与规划": {"逻辑推理": 0.92,"问题分解": 0.85,"动态规划": 0.9},"记忆与学习": {"短期记忆": 0.8,"长期记忆": 0.75,"持续学习": 0.7},"多模态理解": {"跨模态关联": 0.6,"实时处理": 0.5,"多模态生成": 0.55},"人机协作": {"意图理解": 0.75,"主动协作": 0.7,"自然交互": 0.65},"安全与伦理": {"内容安全": 0.95,"偏见控制": 0.85,"可解释性": 0.8}}# 评估Agent1print("=== Agent能力评估 ===")agent1_assessment = assessment.assess_agent(agent1_scores)# 显示评估结果print(f"综合得分: {agent1_assessment['total_score']:.2%}")print("\n维度得分:")for dimension, score in agent1_assessment["dimension_scores"].items():print(f"{dimension}: {score:.2%}")print("\n优势领域:")for strength in agent1_assessment["strengths"]:print(f"- {strength}")print("\n待改进领域:")for weakness in agent1_assessment["weaknesses"]:print(f"- {weakness}")print("\n建议:")for recommendation in agent1_assessment["recommendations"]:print(f"- {recommendation}")# Agent选择示例print("\n\n=== Agent选择建议 ===")# 创建选择顾问advisor = AgentSelectionAdvisor()# 模拟多个Agentagents = [{"id": "A1","name": "金融智能Agent","assessment": agent1_assessment,"cost": 150000},{"id": "A2","name": "全能Agent","assessment": assessment.assess_agent({"基础能力": {"语言理解": 0.9, "任务执行": 0.85, "响应速度": 0.85},"推理与规划": {"逻辑推理": 0.8, "问题分解": 0.75, "动态规划": 0.8},"记忆与学习": {"短期记忆": 0.85, "长期记忆": 0.8, "持续学习": 0.85},"多模态理解": {"跨模态关联": 0.9, "实时处理": 0.85, "多模态生成": 0.9},"人机协作": {"意图理解": 0.8, "主动协作": 0.85, "自然交互": 0.9},"安全与伦理": {"content安全": 0.75, "偏见控制": 0.7, "可解释性": 0.7}}),"cost": 200000},{"id": "A3","name": "客服专用Agent","assessment": assessment.assess_agent({"基础能力": {"语言理解": 0.85, "任务执行": 0.8, "响应速度": 0.9},"推理与规划": {"逻辑推理": 0.65, "问题分解": 0.6, "动态规划": 0.65},"记忆与学习": {"短期记忆": 0.9, "长期记忆": 0.85, "持续学习": 0.8},"多模态理解": {"跨模态关联": 0.85, "实时处理": 0.8, "多模态生成": 0.85},"人机协作": {"意图理解": 0.9, "主动协作": 0.85, "自然交互": 0.95},"安全与伦理": {"content安全": 0.85, "偏见控制": 0.8, "可解释性": 0.75}}),"cost": 80000}]# 为金融行业推荐Agent(预算20万)recommendations = advisor.recommend_agents(agents, "金融", 200000)print("金融行业Agent推荐 (预算: $200,000):")for i, rec in enumerate(recommendations):status = "✓ Within budget" if rec["within_budget"] else "✗ Over budget"print(f"{i+1}. {rec['agent_name']} (ID: {rec['agent_id']})")print(f"   匹配度: {rec['match_score']:.2%} | 成本: ${rec['cost']:,} | {status}")print(f"   优势: {', '.join(rec['strengths'])}")print(f"   待改进: {', '.join(rec['weaknesses'])}\n")

结语

大模型Agent技术代表了人工智能发展的新阶段,它不仅继承了大模型的强大语言理解和生成能力,还通过自主决策和任务执行能力,将AI的应用边界推向了新的高度。从金融风控到医疗诊断,从智能制造到客户服务,Agent技术正在各个领域展现其变革性潜力。

然而,技术发展也带来了新的挑战。如何确保Agent决策的公平性、透明度和安全性,如何平衡自动化与人类控制,如何应对技术对就业和社会结构的影响,这些都是我们需要认真思考的问题。

未来,随着技术的不断成熟和应用场景的拓展,我们期待看到更多负责任、可信赖、高效能的Agent系统出现,它们将成为人类工作和生活的重要伙伴,共同创造更智能、更高效、更人性化的未来。

正如我们所展示的,大模型Agent技术已经超越了简单的对话系统,发展成为能够理解、推理、规划和执行的智能体。通过结合先进的机器学习算法、丰富的知识库和精心设计的交互机制,这些Agent正在逐步实现从"工具"到"伙伴"的转变。

我们相信,在研究人员、工程师、开发者等大家的共同努力下,大模型Agent技术将为人类社会带来深远的积极影响,推动我们进入一个人机协作、智能增强的新时代。

码字不易,敬请给个关注或赞,我将持续输出更多高质量AI Agent相关原理与实现方案。

http://www.dtcms.com/a/346201.html

相关文章:

  • Debezium导致线上PostgreSQL数据库磁盘日志飙升处理方案
  • Unreal Engine ATriggerVolume
  • java 海报、图片合成
  • 蓝牙部分解析和代码建构
  • SSH如何访问只有没有公网IP的云服务器
  • loss 基本稳定,acc 一直抖动,如何优化?
  • assetbuddle hash 比对
  • 【计算机网络】 IPV4和IPV6区别
  • JSON学习和应用demo
  • 每日算法题【链表】:移除链表元素、反转链表
  • 嵌入式第三十五课!!Linux下的网络编程
  • 非标机械设备工厂,一般会遇到哪些问题
  • Linux服务器查看启动服务的5种方法
  • 基于RBAC的权限控制:从表设计到接口实现全指南
  • Beszel 服务器监控平台使用教程
  • JVM虚拟机
  • Leetcode—1683. 无效的推文【简单】
  • 网络与信息安全有哪些岗位:(7)等级保护测评师
  • tensorflow-gpu 2.7下的tensorboard与profiler插件版本问题
  • 第九章 Leaflet 实战:多边形绘制工具开发与面积实时计算(含双击报错修复方案)
  • Qt QML实现 无边框圆角窗口拖动(附窗口控制按钮)
  • RAG初筛方案实例验证-多种BM25方案
  • 类器官培养基系列,助力高效医学研究
  • Navicat连接MySQL-出现1045无法连接问题
  • AI实验管理神器:WandB全功能解析
  • 【python】os.mkdir() 和 os.makedirs()区别
  • 数学建模-灰色关联分析
  • map_set
  • Trie 树(字典树)
  • Rust 入门 注释和文档之 cargo doc (二十三)