当前位置: 首页 > news >正文

Zynq中级开发七项必修课-第三课:S_AXI_GP0 主动访问 PS 地址空间

Zynq中级开发七项必修课-第三课:S_AXI_GP0 主动访问 PS 地址空间

目标

  • 1.0 编写 AXI-Lite Master:按键计数 → 写入 PS 内存
  • 1.1 PL 触发中断 → PS 响应并串口打印按键计数值

BD图

请添加图片描述

axi_lite_master.v

// =====================================================
// AXI4-Lite Simple Master (single-shot, non-pipelined)
// - Pure Verilog-2001
// - Robust to 0-cycle / very-fast responses (no miss)
// - Works with SmartConnect / Zynq PS S_AXI_GP*
// =====================================================
module axi_lite_master #(parameter ADDR_WIDTH = 32,parameter DATA_WIDTH = 32
)(input  wire                     clk,input  wire                     rst_n,          // active-low reset, sync to clk// ---------------- AXI4-Lite Master IF ----------------// Write addressoutput reg  [ADDR_WIDTH-1:0]    m_axi_awaddr,output reg  [2:0]               m_axi_awprot,output reg                      m_axi_awvalid,input  wire                     m_axi_awready,// Write dataoutput reg  [DATA_WIDTH-1:0]    m_axi_wdata,output reg  [(DATA_WIDTH/8)-1:0] m_axi_wstrb,output reg                      m_axi_wvalid,input  wire                     m_axi_wready,// Write responseinput  wire [1:0]               m_axi_bresp,   // 2'b00=OKAYinput  wire                     m_axi_bvalid,output reg                      m_axi_bready,// Read addressoutput reg  [ADDR_WIDTH-1:0]    m_axi_araddr,output reg  [2:0]               m_axi_arprot,output reg                      m_axi_arvalid,input  wire                     m_axi_arready,// Read data/respinput  wire [DATA_WIDTH-1:0]    m_axi_rdata,input  wire [1:0]               m_axi_rresp,   // 2'b00=OKAYinput  wire                     m_axi_rvalid,output reg                      m_axi_rready,// ---------------- User Side (single request at a time) ---------------input  wire                     write_req,     // pulse: 1clk = start one writeinput  wire [ADDR_WIDTH-1:0]    write_addr,input  wire [DATA_WIDTH-1:0]    write_data,output reg                      write_done,    // pulse: 1clk when write completesoutput reg                      write_err,     // latched for 1clk at doneinput  wire                     read_req,      // pulse: 1clk = start one readinput  wire [ADDR_WIDTH-1:0]    read_addr,output reg  [DATA_WIDTH-1:0]    read_data,output reg                      read_done,     // pulse: 1clk when read completesoutput reg                      read_err,      // latched for 1clk at doneoutput wire                     busy           // 1=there's an in-flight txn
);// ---------------- Edge detect to make interface tolerant to level inputsreg wr_req_d, rd_req_d;wire wr_pulse = write_req & ~wr_req_d;wire rd_pulse = read_req  & ~rd_req_d;// In-flight markers (no full FSM needed)wire wr_inflight = m_axi_awvalid | m_axi_wvalid | m_axi_bready;wire rd_inflight = m_axi_arvalid | m_axi_rready;assign busy = wr_inflight | rd_inflight;// ---------------- Registerslocalparam [2:0] PROT_DEFAULT = 3'b000;always @(posedge clk or negedge rst_n) beginif (!rst_n) beginwr_req_d       <= 1'b0;rd_req_d       <= 1'b0;m_axi_awaddr   <= {ADDR_WIDTH{1'b0}};m_axi_awprot   <= PROT_DEFAULT;m_axi_awvalid  <= 1'b0;m_axi_wdata    <= {DATA_WIDTH{1'b0}};m_axi_wstrb    <= {(DATA_WIDTH/8){1'b0}};m_axi_wvalid   <= 1'b0;m_axi_bready   <= 1'b0;m_axi_araddr   <= {ADDR_WIDTH{1'b0}};m_axi_arprot   <= PROT_DEFAULT;m_axi_arvalid  <= 1'b0;m_axi_rready   <= 1'b0;write_done     <= 1'b0;write_err      <= 1'b0;read_done      <= 1'b0;read_err       <= 1'b0;read_data      <= {DATA_WIDTH{1'b0}};end else begin// sample requests for edge detectionwr_req_d <= write_req;rd_req_d <= read_req;// default: clear 1-cycle pulseswrite_done <= 1'b0;read_done  <= 1'b0;// ============================================================// WRITE: fire when wr_pulse && !busy// - AW/W raised together; BREADY asserted immediately// ============================================================if (wr_pulse && !busy) beginm_axi_awaddr  <= write_addr;m_axi_awprot  <= PROT_DEFAULT;m_axi_awvalid <= 1'b1;m_axi_wdata   <= write_data;m_axi_wstrb   <= {(DATA_WIDTH/8){1'b1}};m_axi_wvalid  <= 1'b1;m_axi_bready  <= 1'b1;   // ready to accept response ASAPwrite_err     <= 1'b0;   // clear error for new txnend// AW handshake completes -> drop AWVALIDif (m_axi_awvalid && m_axi_awready)m_axi_awvalid <= 1'b0;// W handshake completes -> drop WVALIDif (m_axi_wvalid && m_axi_wready)m_axi_wvalid <= 1'b0;// B response: complete write on any cycle handshake occursif (m_axi_bvalid && m_axi_bready) beginm_axi_bready <= 1'b0;write_done   <= 1'b1;write_err    <= (m_axi_bresp != 2'b00); // OKAY=00end// ============================================================// READ: fire when rd_pulse && !busy// - AR raised; RREADY asserted immediately// ============================================================if (rd_pulse && !busy) beginm_axi_araddr  <= read_addr;m_axi_arprot  <= PROT_DEFAULT;m_axi_arvalid <= 1'b1;m_axi_rready  <= 1'b1;   // be ready for 0-cycle dataread_err      <= 1'b0;end// AR handshake completes -> drop ARVALIDif (m_axi_arvalid && m_axi_arready)m_axi_arvalid <= 1'b0;// R data: complete read on any cycle handshake occursif (m_axi_rvalid && m_axi_rready) beginm_axi_rready <= 1'b0;read_data    <= m_axi_rdata;read_done    <= 1'b1;read_err     <= (m_axi_rresp != 2'b00); // OKAY=00endendendendmodule

key_debounce.v

// ============================================================================
// Module name : key_debounce
// Author      : ming
// Description : 按键消抖模块
//               - 按键持续按下超过设定时间后,输出一个时钟周期脉冲
//               - 累计按键按下次数
// Parameters  : P_CLK_FREQ_MHZ - 输入时钟频率 (MHz)
//               P_DEBOUNCE_MS  - 消抖时间 (ms)
//               L_CNT_WIDTH    - 计数器位宽
// ============================================================================module key_debounce
#(parameter P_CLK_FREQ_MHZ = 50,  // 时钟频率 MHzparameter P_DEBOUNCE_MS  = 20,  // 消抖时间 msparameter L_CNT_WIDTH    = 32   // 计数器位宽
)
(input   wire        i_clk,           // 系统时钟input   wire        i_rst_n,         // 全局复位,低有效input   wire        i_key,           // 按键输入(低有效)output  reg         o_key_pulse,     // 消抖脉冲output  reg [31:0]  o_key_pulse_cnt  // 按键次数
);// 根据时钟频率和消抖时间计算最大计数值localparam L_MAX_CNT = P_CLK_FREQ_MHZ * 1000 * P_DEBOUNCE_MS;reg [L_CNT_WIDTH-1:0] r_cnt;// 计数器:按键按下计时always@(posedge i_clk or negedge i_rst_n)if(!i_rst_n)r_cnt <= {(L_CNT_WIDTH+1){1'b0}};else if(i_key == 1)r_cnt <= {(L_CNT_WIDTH+1){1'b0}};else if(i_key == 0 && r_cnt < L_MAX_CNT-1)r_cnt <= r_cnt + 1'b1;elser_cnt <= r_cnt;// 输出脉冲:稳定按下超过设定时间,输出 1 个时钟周期脉冲always@(posedge i_clk or negedge i_rst_n)if(!i_rst_n) begin o_key_pulse     <= 1'b0;o_key_pulse_cnt <= 32'd0;end else if(r_cnt == L_MAX_CNT-2) begin o_key_pulse     <= 1'b1;o_key_pulse_cnt <= o_key_pulse_cnt + 1;end elseo_key_pulse <= 1'b0;endmodule

pulse_rise_counter.v

`timescale 1ns/1ps
// pulse_rise_counter.v — 上升沿计数器(简洁版)
// - 记录 i_sig 的上升沿个数到 o_count
// - 含两级同步,适合异步来源(IO/外设)
// - 计数回卷(溢出后从 0 重新计)
//
// 端口:
//   i_clk   : 时钟
//   i_rst_n : 低有效复位
//   i_sig   : 需要计数的脉冲/电平信号
//   o_count : 上升沿累计计数
module pulse_rise_counter #(parameter integer P_WIDTH = 32
)(input  wire                 i_clk,input  wire                 i_rst_n,input  wire                 i_sig,output reg  [P_WIDTH-1:0]   o_count
);// 两级同步,避免亚稳态reg r_sync1, r_sync2;always @(posedge i_clk or negedge i_rst_n) beginif (!i_rst_n) beginr_sync1  <= 1'b0;r_sync2  <= 1'b0;o_count  <= {P_WIDTH{1'b0}};end else beginr_sync1 <= i_sig;r_sync2 <= r_sync1;// 上升沿检测:前一拍0,这一拍1if (r_sync1 & ~r_sync2)o_count <= o_count + 1'b1;endendendmodule

blink_led.v

module blink_led #(parameter P_CLK_FREQ  = 50_000_000,   // 时钟频率parameter P_BLINK_HZ  = 1             // 闪烁频率
)(input   i_clk,input   i_rst_n,output   o_led
);localparam integer L_HALF_CYCLES = P_CLK_FREQ / (2 * P_BLINK_HZ);reg [$clog2(L_HALF_CYCLES):0] r_cnt = 0;reg r_led;assign o_led = r_led;always @(posedge i_clk or negedge i_rst_n) beginif (!i_rst_n) beginr_cnt  <= 0;r_led <= 0;end else beginif (r_cnt == L_HALF_CYCLES - 1) beginr_cnt  <= 0;r_led <= ~r_led;end else beginr_cnt <= r_cnt + 1;endendendendmodule

system.xdc


#开发板约束文件#时序约束
create_clock -period 20.000 -name PL_GCLK [get_ports PL_GCLK]#IO引脚约束
#----------------------系统时钟---------------------------
set_property -dict {PACKAGE_PIN U18 IOSTANDARD LVCMOS33} [get_ports PL_GCLK]#----------------------系统复位---------------------------
set_property -dict {PACKAGE_PIN N16 IOSTANDARD LVCMOS33} [get_ports PL_RESET]#----------------------PL_KEY---------------------------
set_property -dict {PACKAGE_PIN L14 IOSTANDARD LVCMOS33} [get_ports KEY0]
set_property -dict {PACKAGE_PIN K16 IOSTANDARD LVCMOS33} [get_ports KEY1]#----------------------PL_LED---------------------------
#底板
set_property -dict {PACKAGE_PIN H15 IOSTANDARD LVCMOS33} [get_ports LED0]
set_property -dict {PACKAGE_PIN L15 IOSTANDARD LVCMOS33} [get_ports LED1]#----------------------PL_UART(RS232)/RS485---------------------------
set_property -dict {PACKAGE_PIN K14 IOSTANDARD LVCMOS33} [get_ports PL_UART_RXD]
set_property -dict {PACKAGE_PIN M15 IOSTANDARD LVCMOS33} [get_ports PL_UART_TXD]

PS 裸机测试

#include "xil_io.h"
#include "xil_mmu.h"
#include "xil_printf.h"#include "xparameters.h"
#include "xscugic.h"
#include <stdio.h>
//共享内存基地址
#define SHARE_MEM_BASE  0x01000000U
//S_AXI_GP0 接口写入的集地址
#define BASE_ADDR       0x01000000U
#define MAX_INDEX       30// ======= PL中断号 =======
#define PL_IRQ_ID61       61
#define GIC_DEVICE_ID 				XPAR_PS7_SCUGIC_0_DEVICE_ID
// GIC 控制器实例
XScuGic intc;
// =============================
// PL 中断服务函数
// 对应 PL 触发的 IRQ 信号 (IRQ_F2P)
// =============================
static void PL_IRQHandler(void *ctx) {uintptr_t irq_src = (uintptr_t)ctx;static int  irq_cnt=0;irq_cnt++;xil_printf("PL%d triggered %d!\r\n",irq_src,irq_cnt);int regInx=0;u32 read_val = Xil_In32(BASE_ADDR + 4 * regInx);xil_printf("[r %d] = 0x%08X / %u\r\n", regInx, read_val, read_val);
}// =============================
// 中断控制器初始化函数
// 配置 GIC,用于使能 PL 触发的中断
// =============================
static int IRQ_Init(void)
{int status;XScuGic_Config *cfg = XScuGic_LookupConfig(GIC_DEVICE_ID);if (!cfg) return XST_FAILURE;// 1) 初始化 GIC(只此一次)status = XScuGic_CfgInitialize(&intc, cfg, cfg->CpuBaseAddress);if (status != XST_SUCCESS) return status;// 2) 顶层异常框架(只此一次)Xil_ExceptionInit();Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,(Xil_ExceptionHandler)XScuGic_InterruptHandler,&intc);// 3) 触发方式 & 优先级(可选但推荐;数值越小优先级越高)// PL 直连 IRQ_F2P 通常上升沿(0x3),示例优先级 0x80(高于 UART)XScuGic_SetPriorityTriggerType(&intc, PL_IRQ_ID61,     0x80, 0x3);// 4) 连接中断源status = XScuGic_Connect(&intc, PL_IRQ_ID61,(Xil_ExceptionHandler)PL_IRQHandler, (void*)0);if (status != XST_SUCCESS) return status;// 5) 使能XScuGic_Enable(&intc, PL_IRQ_ID61);// 6) 全局开中断(只此一次)Xil_ExceptionEnable();return XST_SUCCESS;
}int main() {xil_printf("S_AXI_GP0  test.\n");//直接把 Cortex-A9 的数据缓存(D-Cache)全局关闭。// Xil_DCacheDisable();//把指定的地址段(通常 1MB 对齐)标记为 “非缓存、可共享” 内存Xil_SetTlbAttributes(SHARE_MEM_BASE, NORM_NONCACHE | SHAREABLE);IRQ_Init();char cmd;int index;u32 value;while (1) {xil_printf("> ");if (scanf(" %c", &cmd) != 1)continue;switch (cmd){case 'r':if (scanf("%d", &index) == 1){if (index < 0 || index > MAX_INDEX){xil_printf("Error: index out of range [0 ~ %d]\r\n", MAX_INDEX);while (getchar() != '\n');continue;}u32 read_val = Xil_In32(BASE_ADDR + 4 * index);xil_printf("[r %d] = 0x%08X / %u\r\n", index, read_val, read_val);}else{xil_printf("Invalid input. Use: r <index>\r\n");while (getchar() != '\n');}break;case 'w':if (scanf("%d %u", &index, &value) == 2){if (index < 0 || index > MAX_INDEX){xil_printf("Error: index out of range [0 ~ %d]\r\n", MAX_INDEX);while (getchar() != '\n');continue;}Xil_Out32(BASE_ADDR + 4 * index, value);xil_printf("[w %d] = 0x%08X / %u\r\n", index, value, value);}else{xil_printf("Invalid input. Use: w <index> <value>\r\n");while (getchar() != '\n');}break;case 'l':{break;}default:xil_printf("Unknown command '%c'. Use 'r' or 'w'.\r\n", cmd);while (getchar() != '\n');break;}}return 0;
}

测试结果

在这里插入图片描述

http://www.dtcms.com/a/343004.html

相关文章:

  • 通信算法之317:基于Xilinx FPGA平台的符号同步算法(接收序列与本地序列互相关-不共轭乘)
  • ODDR实现多bit单边沿采样数据转为多bit双沿采样数据
  • 前端-Vue笔记(核心语法)
  • linux内核 - 内存分配机制介绍
  • MySQL 8.4.6 LTS 安装教程 windows
  • 如何在mac玩windows游戏?3个工具推荐,不用换电脑!
  • MiniGPT-4
  • 在Excel和WPS表格中合并多个单元格这样最快
  • 第14章 结构和其他数据形式
  • 数据分类分级的关键难点以及应对之道
  • Go1.25的源码分析-src/runtime/runtime1.go(GMP)g
  • U盘安装 CentOS Stream 10 实战复盘:三大常见问题与解决方法
  • 通义千问VL-Plus:当AI“看懂”屏幕,软件测试的OCR时代正式终结!
  • Java 项目中 MySQL 数据向 Redis 迁移的技术实践与深度剖析
  • JVM 性能监控工具全解析:从命令行到可视化全方位指南
  • 图像形态学:膨胀、腐蚀和边缘检测与绘制
  • Java后端面试场景题大全:2025年高频考点深度解析
  • 大模型部署
  • 造成云手机闪退的原因有哪些?
  • 使用VBA宏批量修改Word中表格题注格式
  • HYPE分布式水文模型建模方法与案例分析实践技术应用
  • AI 时代的数字伦理选择题
  • Mac 电脑 IDEA 执行 Maven 出现 No route to host 问题
  • Django REST框架核心:GenericAPIView详解
  • 【力扣 买股票的最佳时机II Java/Python】
  • rt-thread使用sfud挂载spi flash, 并使用spi驱动st7789 lcd的trace分析(使用spi dma)
  • 生信分析自学攻略 | R语言函数与参数介绍
  • kylin v10只允许kylin用户登录解决办法
  • 雅菲奥朗SRE知识墙分享(四):『AI已开始重塑劳动力市场,美国年轻科技从业者首当其冲』
  • 数据结构-HashSet