当前位置: 首页 > news >正文

C语言递归——青蛙跳台阶问题和汉诺塔问题

一、青蛙跳台阶问题

题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上n级台阶总共有多少种跳法。

问题分析:
青蛙跳台阶问题可以分成n个子问题。假设青蛙要跳上n级台阶,那么它的最后一步有两种选择:
1.从第n-1级台阶跳1步到达第n级
2.从第n-2级台阶跳2步到达第n级

所以,跳到第n级台阶的跳法数等于跳到第n-1级台阶的跳法数加上跳到第n-2级台阶的跳法数,用数学函数表示为**F(n) = F(n-1) + F(n-2)**

边界条件:
1.当n=1时,青蛙只能跳1步,因此只有一种跳法:F(n) = 1
2.当n=2时,青蛙有两种跳法:连续跳两步,或者直接跳两步,有两种跳法:F(n) = 2

1.递归解法:

优点:简单直观,易理解
缺点:效率极低,不适合较大的n,时间复杂度为2^n

#include <stdio.h>
int F(int n)
{
	if (n <= 0)
	{
		return 0;
	}
	if (n == 1)
	{
		return 1;
	}
	if (n == 2)
	{
		return 2;
	}
	return F(n - 1) + F(n - 2);
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int count = F(n);
	printf("%d\n", count);
	return 0;
}

2.迭代(循环)方法

优点:避免重复计算,效率高

#include <stdio.h>
int F(int n)
{
	if (n <= 0)
	{
		return 0;
	}
	if (n == 1)
	{
		return 1;
	}
	if (n == 2)
	{
		return 2;
	}

	int a = 1;
	int b = 2;
	int c = 0;
	for (int j = 3; j <= n; j++)
	{
		c = a + b;
		a = b;
		b = c;
	}
	return c;
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int count = F(n);
	printf("%d\n", count);
	return 0;
}

二、汉诺塔问题

题目描述:
有三根柱子,分别为A、B和C。在A柱子上有n个大小不一的盘子,从上到下依次增大。目标是将所有盘子从A柱子移动到C柱子上,移动过程中需要满足以下规则:
•每次只能移动一个盘子
•每次移动时,盘子必须从顶部移动到另一根柱子的顶部
•任何时候,较大的盘子不能放在较小的盘子上面

解题思路:
假设我们需要将n个盘子从A柱子移动到C柱子,可以分解为以下步骤:
•将上面的n-1个盘子从A柱子移动到B柱子(借助C柱子)
•将第n个盘子(最大的盘子)从A柱子直接移动到C柱子
•再将B柱子上的n-1个盘子移动到C柱子(借助A柱子)

递归公式:
• 如果只有一个盘子(n=1),直接将盘子从A柱子移动到C柱子
• 如果有n个盘子(n>1),按照上述三步递归解决
终止条件:
• 当n=1时,直接移动盘子,无需进一步分解

1.解法

优点:简洁易懂
缺点:计算较大的数,时间会很久

#include <stdio.h>
void hanoi(int n, char A, char B, char C)
{
	if (n == 1)
	{
		printf("将第%d个盘子从%c柱子移动到%c柱子\n", n, A, C);
		return;
	}
	//将n-1个盘子从A移动到B,借助C
	hanoi(n - 1, A, C, B);

	//将n-1个盘子从A移动到C
	printf("将第%d个盘子从%c柱子移动到%c柱子\n", n, A, C);

	//将n-1个盘子从B移动到C,借助A
	hanoi(n - 1, B, A, C);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	hanoi(n, 'A', 'B', 'C');
	return 0;
}
http://www.dtcms.com/a/33932.html

相关文章:

  • JDBC学习
  • servlet相关
  • 机器视觉3D相机打光效果如何判断好坏,机器视觉3D相机打光效果评估方法
  • 【电路笔记】-简单的LED闪烁器
  • EndNote与Word关联:科研写作的高效助力
  • 基于CentOS7安装kubesphere和Kubernetes并接入外部ES收集日志
  • CH340 自动下载电路分析
  • 五、Three.js顶点UV坐标、纹理贴图
  • 程序员学商务英语之At the Hotel
  • 22.回溯算法4
  • [LeetCode力扣hot100]-快速选择和快排
  • 突破“第一崇拜“:五维心理重构之路
  • 数据库二三事(6)
  • C++ mutex常见问题
  • 【Linux】动静态库
  • 【Git 学习笔记_27】DIY 实战篇:利用 DeepSeek 实现 GitHub 的 GPG 密钥创建与配置
  • Spring Boot3.x集成Flowable7.x(一)Spring Boot集成与设计、部署、发起、完成简单流程
  • 解决Tensorflow找不到GPU的问题
  • 单页图床HTML源码+本地API接口图床系统修复版源码
  • 【大模型】蓝耘智算云平台快速部署DeepSeek R1/R3大模型详解
  • 响应式数据ref()和reactive()的使用
  • 嵌入式八股,内存泄漏
  • imutils opencv-python 的一些操作
  • C/C++中的字符串
  • TCP半连接、长连接
  • Windows获取字体文件
  • R语言安装教程(附安装包)R语言4.3.2版本安装教程
  • deepseek 清华大学[1-5版]全集
  • 【PX4日志解析报错】pyulog工具解析日志出错
  • 【管道 】