当前位置: 首页 > news >正文

Pandas 入门:数据分析的得力工具

一、Pandas 是什么?

Pandas 是一个开源的 Python 类库,专为数据分析、处理和可视化设计。它有三大优势:高性能、易用的数据结构和便捷的分析工具,是数据处理的得力助手。

二、怎么用 Pandas?

安装:可以用 pip install pandas 或 conda install pandas,用清华源(https://pypi.tuna.tsinghua.edu.cn/simple)能加速安装。

导入:通常用 import pandas as pd 语句导入,方便后续使用。

三、Pandas 的核心数据结构

1. Series

它类似表格中的一列,像一维数组,能存各种数据类型,由索引和值组成。创建方式多样:

用列表:不指定索引的话,默认从 0 开始。

用 ndarray:可以自己指定索引标签,比如 'a'、'b' 等。

用字典:字典的键会成为索引,值就是 Series 的值。

还能查看它的索引(.index)和数值(.values)。

2. DataFrame

这是个表格型数据结构,有行索引和列索引,列可以是不同数据类型。构造方法灵活,数据可以是 ndarray、series、列表、字典等。创建方式有:

用列表:需要指定列标签。

用 ndarrays:把数据组织成字典形式,键作为列名。

用字典:每个字典项对应一行数据,缺失的键会用 NaN 填充。

四、Pandas 数据查询

主要用 loc() 方法:

取单行:df.loc[行索引],能返回指定行的数据。

取多行:用 df.loc[[行索引1, 行索引2...]] 的格式,返回多个指定行。

当设置了自定义索引(比如用 "Chinese"、"Math" 等),直接用自定义索引就能取对应行。

掌握这些,就能轻松上手 Pandas 处理数据啦!

http://www.dtcms.com/a/316605.html

相关文章:

  • PowerBI VS QuickBI 实现图表的动态配色
  • Vue 2 渲染链路剖析
  • Linux逻辑卷管理操作指南
  • Arxiv-Daily
  • AUTOSAR进阶图解==>AUTOSAR_RS_ECUResourceTemplate
  • 【前端】使用jQuery播放图片,类似播放幻灯片一样
  • Redis面试精讲 Day 11:Redis主从复制原理与实践
  • RAG向量检索增强生成
  • MediaPipe框架解析(五):c++ face_mesh解析
  • TDengine 中 TDgpt 的模型评估工具
  • 基于WOA鲸鱼优化的VMD-GRU时间序列预测算法matlab仿真
  • 代码随想录day57图论7
  • (ZipList入门笔记一)ZipList的节点介绍
  • 【RH124 问答题】第 6 章 管理本地用户和组
  • ⭐CVPR2025 MatAnyone:稳定且精细的视频抠图新框架
  • LLM开发——语言模型会根据你的提问方式来改变答案
  • Android与Flutter混合开发:页面跳转与通信完整指南
  • 深入剖析 RAG 检索系统中的召回方式:BM25、向量召回、混合策略全解析
  • Go语言 string
  • stm32项目(21)——基于STM32和MPU6050的体感机械臂开发
  • 跨尺度目标漏检率↓82.4%!陌讯多尺度融合算法在占道经营识别的实战优化
  • 结构化开发方法详解:软件工程的奠基性范式
  • 机器学习——贝叶斯
  • Android 之 Kotlin中的协程(Dispatchers.IO)
  • Android UI 组件系列(十一):RecyclerView 多类型布局与数据刷新实战
  • ara::log::LogStream::WithTag的概念和使用案例
  • 鸿蒙开发--web组件
  • Java技术栈/面试题合集(5)-SpringBoot篇
  • SpringBoot3.x入门到精通系列:4.1 整合 MongoDB 详解
  • 《四种姿势用Java玩转AI大模型:从原生HTTP到LangChain4j》